8/29/2012

TECHNIQUES AND LESSONS FROM
SOFTWARE VERIFICATION

Gerard Holzmann
Jet Propulsion Laboratory, California Institute of Technology

NASA/IPL Laboratory
for Reliable software

Software Verification Methods
we used on MSL

» Redefined Code Review Process, based the Scrub tool

* New JPL-wide Coding Standard for Mission Critical
Software

» Required Certification Courses for Software Developers

Integration of Static Source Code Analysis with every

build and release & with code reviews (Coverity, Codesonar,
Semmle, Uno)

» Thorough Logic Verification of various MSL software
subsystems with the Spin Model Checker

+ Example 1: data management subsystem (MRF)
 Outcome: complete redesign

+ Example 2: instrument library manager (IML)
» Qutcome: revision to prevent race conditions

© 2012 California Institute of Technology, Pasadena, CA

8/29/2012

THE JPL CODING STANDARD FOR C

LEVELS OF COMPLIANCE

LOC-1: language compliance
LOC-2: predictable execution
LOC-3: defensive coding

LOC-4: code clarity

LOC-5: MISRA shall compliance
LOC-6: MISRA should compliance

© 2012 California Institute of Technology, Pasadena, CA

THE POWER OF 10 RULES

. Restrict to simple control flow constructs

. Do not use recursion and give all loops a fixed upper-bound
. Do not use dynamic memory allocation after initialization

. Limit functions to no more than ~60 lines of text

. Use minimally two assertions per function on average

. Declare data objects at the smallest possible level of scope

. Check the return value of non-void functions; check the validity of
parameters

8. Limit the use of the preprocessor to file inclusion and simple macros
9. Limit the use of pointers. Use no more than N level of dereferencing
10. Compile with all warnings enabled, and use source code analyzers

http://spinroot.com/p10/
© 2012 California Institute of Technology, Pasadena, CA

http://lars-lab.jpl.nasa.gov/
http://lars-lab.jpl.nasa.gov/
http://lars-lab.jpl.nasa.gov/

GENERATION OF TOOL REPORTS
extract

NBl?J:L'y —> make __>~B;lg':gll-°g —> compiler calls
(nes) " (~3K lines)

~3.8M lines / \

Defect Detection Coding Rule Compliance

NN SN

s[ele gcc strict coverity codesonar uno P1Ostandard I

[R A M B

triaging €——
SCRUB database

© 2012 California Institute of Technology, Pasadena, CA

~80% OF ALL REPORTS LED TO A CODE FIX
(BOTH FOR PEER AND TOOL GENERATED REPORTS)

% Actions per Report
500,000 lines of code, 130 modules, 20,811 reports, 16,798
actions

© 2012 California Institute of Technology, Pasadena, CA

8/29/2012

TESTING

in test-based verification one often treats all code

 but it is usefule to distinguish:

* deterministic (e.g., math) routines and
* non-deterministic (e.g., reactive) code

math routines
(deterministic)

randomized

(fuzz) testing
+

static analysis

&

sampling-based
testing
reactive code
(concurrent)

these methods are very useful
although none are “logically complete”
and some are not “logically sound”

© 2012 California Institute of Technology, Pasadena, CA

8/29/2012

alike

Pre- & Post-conditions,
loop invariants, theorem
proving

logic model checking

Swarm veriﬁcation

Swarm verification

proof of concept example

200 feature
requirements

call processing

kernel in C

64 GB

mechanically
extracted Spin
verification model

32-core
desktop system with

running Ubuntu Linux

of memory

time to find error traces
using swarm verification:

11 in 1 second
38 in 7 seconds

<10 sec

developers
error traces

© 2012 California Institute of Technology, Pasadena, CA

