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KINETICS is a coupled dynamics and chemistry atmosphere model that is data intensive 
and computationally demanding. The potential performance gain from using a 
supercomputer motivates the adaptation from a serial version to a parallelized one. 
Although the initial parallelization had been done, bottlenecks caused by an abundance of 
communication calls between processors led to an unfavorable drop in performance. Before 
starting on the parallel optimization process, a partial overhaul was required because a large 
emphasis was placed on streamlining the code for user convenience and revising the 
program to accommodate the new supercomputers at Caltech and JPL. After the first round 
of optimizations, the partial runtime was reduced by a factor of 23; however, performance 
gains are dependent on the size of the data, the number of processors requested, and the 
computer used.  

I. Introduction 
The main concerns for any numerically laborious program are stability, accuracy, speed, and minimal errors. 

KINETICS, a FORTRAN program developed at Caltech and JPL, simulates various atmospheric models and 
computes its chemical composition. Like many other computational fluid dynamics codes, it models the fluid by 
using grids, is computationally burdensome, and is data heavy. The main numerical method used in KINETICS is 
based on Prather’s advection scheme2. Prather’s algorithm that conserves the second-order moments of the tracer 
distribution during advection1 was expanded to include higher-order moments2. It turns out that conserving second-
order moments is more than adequate accuracy-wise for small grid cell sizing, and higher-order moments are only 
necessary for larger grid cell lengths2. Other improvements or additions in KINETICS are eddy diffusion, chemistry, 
and accounting for the sphercity of the atmosphere2. A major reason KINETICS is using Prather’s scheme over 
other advection algorithms is the use of integration in the calculations rather than the finite-difference procedure2. 
The integration method allows the program to store additional information about the tracer distribution at each time 
step2. Prather pointed out that some of the other advection schemes might outperform his method in one or more of 
the following criteria: stability, accuracy, speed, and errors; but his method is better balanced1. To verify the 
accuracy and stability of the model with the additional features, the sequential version of KINETICS has been tested 
with six benchmark cases where the analytical solutions are known2. The other significant criteria to improvement is 
reducing the total runtime. It is apparent that scaling KINETICS up to a parallelized version will offer the greatest 
results in terms of speed. 

 The use of a supercomputer could greatly reduce the total runtime of a program, but it requires some 
foresight and understanding of the networks to utilize it efficiently. In the mid-2000s, there was a dramatic change in 
the CPU architecture; chip manufactures started putting multiple cores on a single die rather than increasing the 
single processor’s clock speed. Afterwards, there seemed to be a clock speed plateau at around 3.4 ghz. The main 
reasons for the shift from more powerful single cores to less powerful multi-cores are power consumption and heat. 
The multi-core architecture would offer a better performance-per-watt. It is also worth mentioning that the total 
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clock speed for multiple cores do not add linearly; there is overhead required to manage the multiple cores. It looks 
as if the future of computation will rely on parallel computing. Many groups have taken notice leading to a slew of 
parallel APIs like MPI, OPENMP, OPENCL, Pthreads, CUDA, STREAM, C++ AMP and more, created to assist 
the programmer in their parallel executions. While there are many APIs for parallel computing, many of them target 
different aspects of parallel programming. Some are designed for CPUs while others are designed for GPUs. Some 
are used to manage work in a single node and others are used for multiple nodes. There are many APIs that are also 
computer language exclusive. The one used in this project is MPI, which is the standard compiler wrapper for node- 
to-node communication. Even though the performance of CPUs has been increasing each year, the rate of 
advancement for memory and networking hardware are substantially lower; thus, the performance gap between 
processor and communication technologies also increases each year. This means that the main bottlenecks for 
parallel computation might not necessarily come from the amount of calculations, but rather from the transferring 
and storing of data. Parallelization will be necessary in the future, and the understanding of architecture and 
networks are important to hone the program. 

The main objective of my internship was to speed up KINETICS by optimizing the parallelized sections. There 
was also an added priority for user convenience, which includes aspects such as readability, ease of understanding, 
and ease of use. The two main researching groups that will use this program are at JPL and Caltech. KINETICS 
needs to be altered to accommodate for each supercomputer’s environment and interoperability between the 
following compilers: PGI, GNU, Absoft, and Intel. Thus, a second objective of partially overhauling KINETICS 
was established. Section 2 will cover in detail the incentive for overhauling and section 3 will go over the initial 
round of optimizations.  

II. Overhaul 
Originally, KINETICS was written for VAX/VMS machines, which in the past had low memory when compared 

to modern standards. To accommodate for the lack of memory, each subroutine had to be separated into individual 
files and then overlayed. Overlaying is a method where the individual parts are brought into memory one at a time. 
Overlaying also allows the programmer to customize the code for specific conditions or options by overwriting the 
preferred subroutine over other subroutines of the same name. Tasks such as splitting, linking, copying, moving, 
making directories, removing, and archiving were orchestrated in a seemingly convoluted dance among several 
scripts and makefiles in order to overlay. 

Since most computers that are used for scientific research today are using UNIX rather than VMS, the need to 
streamline the code for user convenience was a high priority. The 
major goal was to purge the program of the unnecessary segments 
that involves splitting and overlaying. Same-named subroutines had to 
be condensed to a single subroutine or removed. The essential 
pieces of code from the complicated scripts and makefiles had to be 
identified, then stripped and incorporated into a new command 
script and a new Makefile. The command script was a project-
requested file that acts like a control center where the user can 
choose different simulation options and basically run any 
combination of available modes. Figure 1 is a snippet of command 
script and it lists most of the available options a user can choose. 
The other options were not shown because they are in another area in 
the command script such as choosing the number of processors to 
run. The idea was that the command script would be the only file 
that the user needs to edit. It would create additional scripts or files if 
the computer environment requires it, and the chosen conditions 
and variables would be piped to the Makefile and other scripts. As 
for customizing the instructions for particular conditions, C 
preprocessor commands, also known as pragmas, are a standard 
feature on most, if not all, modern FORTRAN compilers. These 
directives start with a hashtag like #ifdef and #end. The compiler 
would comb through the code before compilation and omit the 
pragmas and the lines between them if the specified condition was not satisfied. 

There were many challenging facets of this project. While some problems were anticipated, others were 
deceptively troublesome. The first two major hurdles were getting acquainted with the code and purging the VMS-

################################ 
LOCATION=CALTECH 
#LOCATION=JPL 
#LOCATION=NEITHER 
 
#BUILD_TYPE=absoft 
#BUILD_TYPE=intel 
BUILD_TYPE=gnu 
#BUILD_TYPE=pgi 
 
#MODEL_TYPE=__ISM 
#MODEL_TYPE=__MARS 
MODEL_TYPE=__TITAN 
#MODEL_TYPE=__EARTH 
 
MPI=YES 
#MPI=NO 
 
NETCDF=YES 

       #NETCDF=NO 
 
################################ 
 

Fig. 1 Simulation options. 
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specific parts. It was expected that the first few passes through the code for familiarity would be rough, but the 
elaborate web of interactions between multiple scripts and makefiles added a whole other level of complication. At 
one point, the files just had to be printed out and examined line by line. After identifying the essential parts, it was 
decided that it would be more favorable to start the scripts from scratch rather than mending the previous files. In 
this case, the script would start with a clean state and every line appended to it would be known and understood.  

Just as in the first two obstacles, the problems with 
familiarity and complications are now applied to computer 
environments and scripts. In terms of hardware, the code 
will be used on ZODIAC at JPL and GANESHA/FUSI at 
Caltech. The difficulties lie in the user-convenience purpose 
of the command script. The capability to have all commands 
in one script proved to be more difficult than anticipated. 
Another issue is that the environment setting for the two 
supercomputers are vastly different. Table 1 highlights a few 
differences between the environments of each machine. 
Usually, the environment would be set in the login/start-up 
files such as .bashrc, .profile, .chsrc, and .bash_profile. The 
program’s makefiles and scripts would be executed in the 
primary shell. With a command script, all executions are 
done in a subshell. The complication comes form the 
passing of environment setting and variables, similar to the 
issue with scope and functions. Not all environment settings 
and variables are automatically passed when a parent 
process (primary shell) forks a child process (subshell). 
There are commands to explicitly pass variables; however, 
the passing is in one direction because any changes made to 
the environment in the child process cannot be passed back 
to the parent. In the case of having the command file, the 
environment has to be set in the subshell’s scope and passed 

to any other script like a Makefile or PBS script. The simulation particular variables had to be defined in the 
command file, then piped to the Makefile for specific-compiler flags, preprocessor defined variables, and libraries. 
Using dynamical environment software like a module is an example of an environment setting that is not passed 
from parent to child. The module path had to be sourced in the PBS script if modules are used within that process. 
GANESHA/FUSI does not use PBS or modules, so there is minimal confusion with subshells. Instead, paths to 
specific compiler configurations have to be built prior to linking.  For ZODIAC, a PBS script is required so the 
entire environment has to created/altered in the command script and later passed along. If the JPL location was 
chosen, the command script will create a PBS script and an environment file from which both will source. The 
command script needs to be able to execute any combination of the options shown in Fig. 1 and an alternative course 
of action has to take place if the combination is invalid like choosing a compiler that is not present on the computer.  

III. Optimization 
While there are many fronts in optimization, the two most common targets are the numerical calculations and the 

communication. Since the algorithm has already been chosen, this section will primarily focus on the 
communication with MPI and FORTRAN. Ideally, a fully parallelized program would rarely have its processor 
communicate with one another. An ideal parallel process is pictorial shown in Fig. 2a). In our case, a less-than-ideal 
semi-parallel execution, Fig. 2b), was used for ease of understanding. The program would be running sequentially 
and when it encounters a section with heavy calculations, the root processor will split up the work and send it to the 
other processors. After each processor completes its part of the calculations, the root processor would then collect 
the necessary data. As we can see, the scattering and gathering of data along with having idle processors is not the 
most efficient use of resources; however, it is easier for people to follow and troubleshoot.  

Table 1. Environmental Differences Between the 
Computers at JPL and Caltech. 

 
 JPL Caltech 

Dynamical 
Environments 

modules paths 

Fortran 
Compilers 

PGI 
Intel 
GNU 

Absoft 

PGI 
Intel 
GNU 

Compilers 
linked to MPI  

PGI 
Intel 
GNU 

Intel 

MPI API MPICH2 SGI or 
MVAPICH 

Job 
Submission PBS none 
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bottleneck. The timing function used for these results was MPI_WTIME(). The reason for a partial runtime instead 
of a total runtime was because some of the other bottlenecks in the code have not been resolved. There are many 
other factors that needed to be sorted out before attempting to alter those sections. The time comparison between the 
before and after for number of processors greater than four is not necessary because the before run had an upward 
sloping trend while the after, shown in Fig. 4, has a decreasing slope. 

IV. Future Work 
The solution presented in the previous section is merely a hot-fix to address the current largest bottleneck and a 

rework of the parallelization might be required to achieve the best results.  Many of the problems were caused by the 
method of splitting the data and work in a noncontiguous fashion. The formulas that are doing the division of work 
needs to be revised for contiguous data and to account for scenarios where the number of processors does not divide 
evenly into the amount to data. Another procedure to reduce the amount of communication is by scattering only the 
necessary data needed for the calculations. Work has been started to identify these arrays, but it has not been 
completed. When most of the apparent problem areas have been dealt with, running the program alongside a profiler 
will help identify other high traffic sections. Running a latency and bandwidth benchmark to pinpoint the critical 
size for each supercomputer will help with decisions on whether to group the data or to just send the data. It might 
be a lot of work, but it might be worthwhile to rearranging the order of indices on the essential arrays for ease of 
division and collection of contiguous data.  

V. Conclusion 
A lot of progress was made in the last four months. The overlaying and file splitting was removed from 

KINETICS. The several old scripts were replaced by a relatively easy-to-read command script and makefile. The 
user would not have to access any file other than the command file to change a simulation option. As for the 
optimization, the main cause for the upward sloping direction as the number of processors increase has been 
determined. A temporary solution was implemented and it has shown a speed increase of at least a factor 23 for the 
duration of the first bottleneck. More importantly, the temporary solution shows a downward sloping trend as the 
number of processors increase. Many other sources of possible stagnation have been identified and a few pathways 
have been established for the different scenarios.  

Appendix 
 

Noncontiguous Data 
  1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

      PROGRAM noncontig_2d 
      IMPLICIT NONE 
 
      INCLUDE 'mpif.h' 
 
      INTEGER :: ierr, nproc, rank 
      INTEGER :: m, n, i, dimen, tot 
      INTEGER :: shape_big(2) ,shape_sub(2), start(2) 
      INTEGER :: big(6,8), sub(3,4), twin(6,8) 
      INTEGER :: displ(4), counts(4) 
      INTEGER :: temp_type, newtype 
      INTEGER(KIND=MPI_ADDRESS_KIND) :: lb, extent 
 
      CALL MPI_INIT(ierr) 
      CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr) 
      CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 
 
      shape_big = (/6,8/)                                            ! shape of main array 
      shape_sub = (/3,4/)                                           ! shape of subarray 
      start = (/0,0/)                                                     ! start pos of subarray in C 
      dimen = 2                                                          ! dimension of array 
 
      IF (rank.EQ.0) THEN 
         big = RESHAPE( (/(i,i=1,48)/), (/6,8/) )        ! create matrix 1:tot 
 
         WRITE(*, '(/,A)') 'The big array:' 
         WRITE(*, '(8i4)') ((big(n,m), m=1,8), n=1,6) 
      END IF 

       % mpif90 noncontig_2d.f 
% mpirun -n 4 ./a.out 
 
My rank is   2 
  25  31  37  43 
  26  32  38  44 
  27  33  39  45 
 
My rank is   3 
  28  34  40  46 
  29  35  41  47 
  30  36  42  48 
 
My rank is   1 
   4  10  16  22 
   5  11  17  23 
   6  12  18  24 
 
The big array: 
   1   7  13  19  25  31  37  43 
   2   8  14  20  26  32  38  44 
   3   9  15  21  27  33  39  45 
   4  10  16  22  28  34  40  46 
   5  11  17  23  29  35  41  47 
   6  12  18  24  30  36  42  48 
 
My rank is   0 
   1   7  13  19 
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29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

 

 
      CALL MPI_TYPE_CREATE_SUBARRAY(dimen, shape_big, shape_sub,  
     >      start, MPI_ORDER_FORTRAN, MPI_INTEGER, temp_type, ierr) 
      CALL MPI_TYPE_GET_EXTENT(MPI_INTEGER, lb, extent, ierr) 
      CALL MPI_TYPE_CREATE_RESIZED(temp_type, lb, extent, newtype, ierr) 
      CALL MPI_TYPE_COMMIT(newtype, ierr) 
 
      counts = (/(1, i=1,nproc)/)                          ! number of ‘items’ being sent 
      displ = (/0,3,24,27/)                                    ! displace array for pos in C 
 
      CALL MPI_SCATTERV(big, counts, displ, newtype, sub, SIZE(sub), 
     >      MPI_INTEGER, 0, MPI_COMM_WORLD, ierr) 
 
      WRITE(*, '(/,A,I3)') 'My rank is ',rank 
      WRITE(*, '(4I4)') ( (sub(n,m), m=1,4), n=1,3) 
 
       sub = sub - 1                                                   ! alter data value for fun 
 
      CALL MPI_GATHERV(sub, SIZE(sub), MPI_INTEGER, twin, counts, displ, 
     >      newtype, 0, MPI_COMM_WORLD, ierr) 
 
      IF (rank.EQ.0) THEN 
         WRITE(*, '(/,A)') 'The twin array after -1:' 
         WRITE(*, '(8i4)')( (twin(n,m), m=1,8), n=1,6) 
      END IF 
 
      CALL MPI_FINALIZE(ierr) 
      END PROGRAM 

   2   8  14  20 
   3   9  15  21 
 
The twin array after -1: 
   0   6  12  18  24  30  36  42 
   1   7  13  19  25  31  37  43 
   2   8  14  20  26  32  38  44 
   3   9  15  21  27  33  39  45 
   4  10  16  22  28  34  40  46 
   5  11  17  23  29  35  41  47 

Contiguous Data 
  1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

      PROGRAM contig_2d 
      IMPLICIT NONE 
 
      INCLUDE 'mpif.h' 
 
      INTEGER :: ierr, nproc, rank 
      INTEGER :: m, n, i, tot 
      INTEGER :: big(6,8), sub(6,2), twin(6,8) 
      INTEGER :: displ(4), counts(4) 
 
      CALL MPI_INIT(ierr) 
      CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr) 
      CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 
 
      IF (rank.EQ.0) THEN 
         big = RESHAPE( (/(i,i=1,48)/), (/6,8/) )     ! create matrix value 1:48 
 
         WRITE(*, '(/,A)') 'The big array:' 
         WRITE(*, '(8i4)') ( (big(n,m), m=1,8), n=1,6 ) 
      END IF 
 
      counts = (/(SIZE(sub), i=1,nproc)/) 
      displ = (/0,12,24,36/) 
 
      CALL MPI_SCATTERV(big, counts, displ, MPI_INTEGER, sub, 
     >      SIZE(sub), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr) 
 
      WRITE(*, '(/,A,I3)') 'My rank is ',rank 
      WRITE(*, '(2I4)') ( (sub(n,m), m=1,2), n=1,8 ) 
 
      sub = sub - 1                                                       ! alter data value for fun 
 
      CALL MPI_GATHERV(sub, SIZE(sub), MPI_INTEGER, twin, counts, 
     >      displ, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr) 
 
      IF (rank.EQ.0) THEN 
         WRITE(*, '(/,A)') 'The twin array after -1:' 
         WRITE(*, '(8i4)') ( (twin(n,m), m=1,8), n=1,6 ) 

       % mpif90 contig_2d.f 
% mpirun -n 4 ./a.out 
 
My rank is   1 
  13  19 
  14  20 
  15  21 
  16  22 
  17  23 
  18  24 
 
My rank is   2 
  25  31 
  26  32 
  27  33 
  28  34 
  29  35 
  30  36 
 
My rank is   3 
  37  43 
  38  44 
  39  45 
  40  46 
  41  47 
  42  48 
 
The big array: 
   1   7  13  19  25  31  37  43 
   2   8  14  20  26  32  38  44 
   3   9  15  21  27  33  39  45 
   4  10  16  22  28  34  40  46 
   5  11  17  23  29  35  41  47 
   6  12  18  24  30  36  42  48 
 
My rank is   0 
   1   7 
   2   8 
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39 
40 
41 
42 

 

      END IF 
 
      CALL MPI_FINALIZE(ierr) 
      END PROGRAM 
 

 

   3   9 
   4  10 
   5  11 
   6  12 
 
The twin array after -1: 
   0   6  12  18  24  30  36  42 
   1   7  13  19  25  31  37  43 
   2   8  14  20  26  32  38  44 
   3   9  15  21  27  33  39  45 
   4  10  16  22  28  34  40  46 
   5  11  17  23  29  35  41  47 
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