

Partial Overhaul and Initial Parallel Optimization of
KINETICS, a Coupled Dynamics and Chemistry

Atmosphere Model

Howard Nguyen
NASA Jet Propulsion Laboratory

Major: Astrophysics
USRP Fall 2012

21 December 2012

NASA USRP – Internship Final Report

Partial Overhaul and Initial Parallel Optimization of
KINETICS, a Coupled Dynamics and Chemistry

Atmosphere Model

Howard Nguyen1
San Francisco State University, San Francisco, CA 94132

Karen Willacy2 and Mark Allen3
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

KINETICS is a coupled dynamics and chemistry atmosphere model that is data intensive
and computationally demanding. The potential performance gain from using a
supercomputer motivates the adaptation from a serial version to a parallelized one.
Although the initial parallelization had been done, bottlenecks caused by an abundance of
communication calls between processors led to an unfavorable drop in performance. Before
starting on the parallel optimization process, a partial overhaul was required because a large
emphasis was placed on streamlining the code for user convenience and revising the
program to accommodate the new supercomputers at Caltech and JPL. After the first round
of optimizations, the partial runtime was reduced by a factor of 23; however, performance
gains are dependent on the size of the data, the number of processors requested, and the
computer used.

I. Introduction
The main concerns for any numerically laborious program are stability, accuracy, speed, and minimal errors.

KINETICS, a FORTRAN program developed at Caltech and JPL, simulates various atmospheric models and
computes its chemical composition. Like many other computational fluid dynamics codes, it models the fluid by
using grids, is computationally burdensome, and is data heavy. The main numerical method used in KINETICS is
based on Prather’s advection scheme2. Prather’s algorithm that conserves the second-order moments of the tracer
distribution during advection1 was expanded to include higher-order moments2. It turns out that conserving second-
order moments is more than adequate accuracy-wise for small grid cell sizing, and higher-order moments are only
necessary for larger grid cell lengths2. Other improvements or additions in KINETICS are eddy diffusion, chemistry,
and accounting for the sphercity of the atmosphere2. A major reason KINETICS is using Prather’s scheme over
other advection algorithms is the use of integration in the calculations rather than the finite-difference procedure2.
The integration method allows the program to store additional information about the tracer distribution at each time
step2. Prather pointed out that some of the other advection schemes might outperform his method in one or more of
the following criteria: stability, accuracy, speed, and errors; but his method is better balanced1. To verify the
accuracy and stability of the model with the additional features, the sequential version of KINETICS has been tested
with six benchmark cases where the analytical solutions are known2. The other significant criteria to improvement is
reducing the total runtime. It is apparent that scaling KINETICS up to a parallelized version will offer the greatest
results in terms of speed.

 The use of a supercomputer could greatly reduce the total runtime of a program, but it requires some
foresight and understanding of the networks to utilize it efficiently. In the mid-2000s, there was a dramatic change in
the CPU architecture; chip manufactures started putting multiple cores on a single die rather than increasing the
single processor’s clock speed. Afterwards, there seemed to be a clock speed plateau at around 3.4 ghz. The main
reasons for the shift from more powerful single cores to less powerful multi-cores are power consumption and heat.
The multi-core architecture would offer a better performance-per-watt. It is also worth mentioning that the total

1 USRP Intern, Space and Astrophyiscal Plasmas, NASA JPL, San Francisco State University.
2 Research Scientist and Mentor, Space and Astrophyiscal Plasmas, M/S 169-506, NASA JPL
3 Principal Research Scientist, Planetary Science, M/S 183-801, NASA JPL.

1

NASA USRP – Internship Final Report

clock speed for multiple cores do not add linearly; there is overhead required to manage the multiple cores. It looks
as if the future of computation will rely on parallel computing. Many groups have taken notice leading to a slew of
parallel APIs like MPI, OPENMP, OPENCL, Pthreads, CUDA, STREAM, C++ AMP and more, created to assist
the programmer in their parallel executions. While there are many APIs for parallel computing, many of them target
different aspects of parallel programming. Some are designed for CPUs while others are designed for GPUs. Some
are used to manage work in a single node and others are used for multiple nodes. There are many APIs that are also
computer language exclusive. The one used in this project is MPI, which is the standard compiler wrapper for node-
to-node communication. Even though the performance of CPUs has been increasing each year, the rate of
advancement for memory and networking hardware are substantially lower; thus, the performance gap between
processor and communication technologies also increases each year. This means that the main bottlenecks for
parallel computation might not necessarily come from the amount of calculations, but rather from the transferring
and storing of data. Parallelization will be necessary in the future, and the understanding of architecture and
networks are important to hone the program.

The main objective of my internship was to speed up KINETICS by optimizing the parallelized sections. There
was also an added priority for user convenience, which includes aspects such as readability, ease of understanding,
and ease of use. The two main researching groups that will use this program are at JPL and Caltech. KINETICS
needs to be altered to accommodate for each supercomputer’s environment and interoperability between the
following compilers: PGI, GNU, Absoft, and Intel. Thus, a second objective of partially overhauling KINETICS
was established. Section 2 will cover in detail the incentive for overhauling and section 3 will go over the initial
round of optimizations.

II. Overhaul
Originally, KINETICS was written for VAX/VMS machines, which in the past had low memory when compared

to modern standards. To accommodate for the lack of memory, each subroutine had to be separated into individual
files and then overlayed. Overlaying is a method where the individual parts are brought into memory one at a time.
Overlaying also allows the programmer to customize the code for specific conditions or options by overwriting the
preferred subroutine over other subroutines of the same name. Tasks such as splitting, linking, copying, moving,
making directories, removing, and archiving were orchestrated in a seemingly convoluted dance among several
scripts and makefiles in order to overlay.

Since most computers that are used for scientific research today are using UNIX rather than VMS, the need to
streamline the code for user convenience was a high priority. The
major goal was to purge the program of the unnecessary segments
that involves splitting and overlaying. Same-named subroutines had to
be condensed to a single subroutine or removed. The essential
pieces of code from the complicated scripts and makefiles had to be
identified, then stripped and incorporated into a new command
script and a new Makefile. The command script was a project-
requested file that acts like a control center where the user can
choose different simulation options and basically run any
combination of available modes. Figure 1 is a snippet of command
script and it lists most of the available options a user can choose.
The other options were not shown because they are in another area in
the command script such as choosing the number of processors to
run. The idea was that the command script would be the only file
that the user needs to edit. It would create additional scripts or files if
the computer environment requires it, and the chosen conditions
and variables would be piped to the Makefile and other scripts. As
for customizing the instructions for particular conditions, C
preprocessor commands, also known as pragmas, are a standard
feature on most, if not all, modern FORTRAN compilers. These
directives start with a hashtag like #ifdef and #end. The compiler
would comb through the code before compilation and omit the
pragmas and the lines between them if the specified condition was not satisfied.

There were many challenging facets of this project. While some problems were anticipated, others were
deceptively troublesome. The first two major hurdles were getting acquainted with the code and purging the VMS-

################################
LOCATION=CALTECH
#LOCATION=JPL
#LOCATION=NEITHER

#BUILD_TYPE=absoft
#BUILD_TYPE=intel
BUILD_TYPE=gnu
#BUILD_TYPE=pgi

#MODEL_TYPE=__ISM
#MODEL_TYPE=__MARS
MODEL_TYPE=__TITAN
#MODEL_TYPE=__EARTH

MPI=YES
#MPI=NO

NETCDF=YES

 #NETCDF=NO

################################

Fig. 1 Simulation options.

2

NASA USRP – Internship Final Report

specific parts. It was expected that the first few passes through the code for familiarity would be rough, but the
elaborate web of interactions between multiple scripts and makefiles added a whole other level of complication. At
one point, the files just had to be printed out and examined line by line. After identifying the essential parts, it was
decided that it would be more favorable to start the scripts from scratch rather than mending the previous files. In
this case, the script would start with a clean state and every line appended to it would be known and understood.

Just as in the first two obstacles, the problems with
familiarity and complications are now applied to computer
environments and scripts. In terms of hardware, the code
will be used on ZODIAC at JPL and GANESHA/FUSI at
Caltech. The difficulties lie in the user-convenience purpose
of the command script. The capability to have all commands
in one script proved to be more difficult than anticipated.
Another issue is that the environment setting for the two
supercomputers are vastly different. Table 1 highlights a few
differences between the environments of each machine.
Usually, the environment would be set in the login/start-up
files such as .bashrc, .profile, .chsrc, and .bash_profile. The
program’s makefiles and scripts would be executed in the
primary shell. With a command script, all executions are
done in a subshell. The complication comes form the
passing of environment setting and variables, similar to the
issue with scope and functions. Not all environment settings
and variables are automatically passed when a parent
process (primary shell) forks a child process (subshell).
There are commands to explicitly pass variables; however,
the passing is in one direction because any changes made to
the environment in the child process cannot be passed back
to the parent. In the case of having the command file, the
environment has to be set in the subshell’s scope and passed

to any other script like a Makefile or PBS script. The simulation particular variables had to be defined in the
command file, then piped to the Makefile for specific-compiler flags, preprocessor defined variables, and libraries.
Using dynamical environment software like a module is an example of an environment setting that is not passed
from parent to child. The module path had to be sourced in the PBS script if modules are used within that process.
GANESHA/FUSI does not use PBS or modules, so there is minimal confusion with subshells. Instead, paths to
specific compiler configurations have to be built prior to linking. For ZODIAC, a PBS script is required so the
entire environment has to created/altered in the command script and later passed along. If the JPL location was
chosen, the command script will create a PBS script and an environment file from which both will source. The
command script needs to be able to execute any combination of the options shown in Fig. 1 and an alternative course
of action has to take place if the combination is invalid like choosing a compiler that is not present on the computer.

III. Optimization
While there are many fronts in optimization, the two most common targets are the numerical calculations and the

communication. Since the algorithm has already been chosen, this section will primarily focus on the
communication with MPI and FORTRAN. Ideally, a fully parallelized program would rarely have its processor
communicate with one another. An ideal parallel process is pictorial shown in Fig. 2a). In our case, a less-than-ideal
semi-parallel execution, Fig. 2b), was used for ease of understanding. The program would be running sequentially
and when it encounters a section with heavy calculations, the root processor will split up the work and send it to the
other processors. After each processor completes its part of the calculations, the root processor would then collect
the necessary data. As we can see, the scattering and gathering of data along with having idle processors is not the
most efficient use of resources; however, it is easier for people to follow and troubleshoot.

Table 1. Environmental Differences Between the
Computers at JPL and Caltech.

 JPL Caltech

Dynamical
Environments

modules paths

Fortran
Compilers

PGI
Intel
GNU

Absoft

PGI
Intel
GNU

Compilers
linked to MPI

PGI
Intel
GNU

Intel

MPI API MPICH2 SGI or
MVAPICH

Job
Submission PBS none

3

NASA USRP – Internship Final Report

bottleneck. The timing function used for these results was MPI_WTIME(). The reason for a partial runtime instead
of a total runtime was because some of the other bottlenecks in the code have not been resolved. There are many
other factors that needed to be sorted out before attempting to alter those sections. The time comparison between the
before and after for number of processors greater than four is not necessary because the before run had an upward
sloping trend while the after, shown in Fig. 4, has a decreasing slope.

IV. Future Work
The solution presented in the previous section is merely a hot-fix to address the current largest bottleneck and a

rework of the parallelization might be required to achieve the best results. Many of the problems were caused by the
method of splitting the data and work in a noncontiguous fashion. The formulas that are doing the division of work
needs to be revised for contiguous data and to account for scenarios where the number of processors does not divide
evenly into the amount to data. Another procedure to reduce the amount of communication is by scattering only the
necessary data needed for the calculations. Work has been started to identify these arrays, but it has not been
completed. When most of the apparent problem areas have been dealt with, running the program alongside a profiler
will help identify other high traffic sections. Running a latency and bandwidth benchmark to pinpoint the critical
size for each supercomputer will help with decisions on whether to group the data or to just send the data. It might
be a lot of work, but it might be worthwhile to rearranging the order of indices on the essential arrays for ease of
division and collection of contiguous data.

V. Conclusion
A lot of progress was made in the last four months. The overlaying and file splitting was removed from

KINETICS. The several old scripts were replaced by a relatively easy-to-read command script and makefile. The
user would not have to access any file other than the command file to change a simulation option. As for the
optimization, the main cause for the upward sloping direction as the number of processors increase has been
determined. A temporary solution was implemented and it has shown a speed increase of at least a factor 23 for the
duration of the first bottleneck. More importantly, the temporary solution shows a downward sloping trend as the
number of processors increase. Many other sources of possible stagnation have been identified and a few pathways
have been established for the different scenarios.

Appendix

Noncontiguous Data
 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

 PROGRAM noncontig_2d
 IMPLICIT NONE

 INCLUDE 'mpif.h'

 INTEGER :: ierr, nproc, rank
 INTEGER :: m, n, i, dimen, tot
 INTEGER :: shape_big(2) ,shape_sub(2), start(2)
 INTEGER :: big(6,8), sub(3,4), twin(6,8)
 INTEGER :: displ(4), counts(4)
 INTEGER :: temp_type, newtype
 INTEGER(KIND=MPI_ADDRESS_KIND) :: lb, extent

 CALL MPI_INIT(ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 shape_big = (/6,8/) ! shape of main array
 shape_sub = (/3,4/) ! shape of subarray
 start = (/0,0/) ! start pos of subarray in C
 dimen = 2 ! dimension of array

 IF (rank.EQ.0) THEN
 big = RESHAPE((/(i,i=1,48)/), (/6,8/)) ! create matrix 1:tot

 WRITE(*, '(/,A)') 'The big array:'
 WRITE(*, '(8i4)') ((big(n,m), m=1,8), n=1,6)
 END IF

 % mpif90 noncontig_2d.f
% mpirun -n 4 ./a.out

My rank is 2
 25 31 37 43
 26 32 38 44
 27 33 39 45

My rank is 3
 28 34 40 46
 29 35 41 47
 30 36 42 48

My rank is 1
 4 10 16 22
 5 11 17 23
 6 12 18 24

The big array:
 1 7 13 19 25 31 37 43
 2 8 14 20 26 32 38 44
 3 9 15 21 27 33 39 45
 4 10 16 22 28 34 40 46
 5 11 17 23 29 35 41 47
 6 12 18 24 30 36 42 48

My rank is 0
 1 7 13 19

6

NASA USRP – Internship Final Report

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

 CALL MPI_TYPE_CREATE_SUBARRAY(dimen, shape_big, shape_sub,
 > start, MPI_ORDER_FORTRAN, MPI_INTEGER, temp_type, ierr)
 CALL MPI_TYPE_GET_EXTENT(MPI_INTEGER, lb, extent, ierr)
 CALL MPI_TYPE_CREATE_RESIZED(temp_type, lb, extent, newtype, ierr)
 CALL MPI_TYPE_COMMIT(newtype, ierr)

 counts = (/(1, i=1,nproc)/) ! number of ‘items’ being sent
 displ = (/0,3,24,27/) ! displace array for pos in C

 CALL MPI_SCATTERV(big, counts, displ, newtype, sub, SIZE(sub),
 > MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

 WRITE(*, '(/,A,I3)') 'My rank is ',rank
 WRITE(*, '(4I4)') ((sub(n,m), m=1,4), n=1,3)

 sub = sub - 1 ! alter data value for fun

 CALL MPI_GATHERV(sub, SIZE(sub), MPI_INTEGER, twin, counts, displ,
 > newtype, 0, MPI_COMM_WORLD, ierr)

 IF (rank.EQ.0) THEN
 WRITE(*, '(/,A)') 'The twin array after -1:'
 WRITE(*, '(8i4)')((twin(n,m), m=1,8), n=1,6)
 END IF

 CALL MPI_FINALIZE(ierr)
 END PROGRAM

 2 8 14 20
 3 9 15 21

The twin array after -1:
 0 6 12 18 24 30 36 42
 1 7 13 19 25 31 37 43
 2 8 14 20 26 32 38 44
 3 9 15 21 27 33 39 45
 4 10 16 22 28 34 40 46
 5 11 17 23 29 35 41 47

Contiguous Data
 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

 PROGRAM contig_2d
 IMPLICIT NONE

 INCLUDE 'mpif.h'

 INTEGER :: ierr, nproc, rank
 INTEGER :: m, n, i, tot
 INTEGER :: big(6,8), sub(6,2), twin(6,8)
 INTEGER :: displ(4), counts(4)

 CALL MPI_INIT(ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 IF (rank.EQ.0) THEN
 big = RESHAPE((/(i,i=1,48)/), (/6,8/)) ! create matrix value 1:48

 WRITE(*, '(/,A)') 'The big array:'
 WRITE(*, '(8i4)') ((big(n,m), m=1,8), n=1,6)
 END IF

 counts = (/(SIZE(sub), i=1,nproc)/)
 displ = (/0,12,24,36/)

 CALL MPI_SCATTERV(big, counts, displ, MPI_INTEGER, sub,
 > SIZE(sub), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

 WRITE(*, '(/,A,I3)') 'My rank is ',rank
 WRITE(*, '(2I4)') ((sub(n,m), m=1,2), n=1,8)

 sub = sub - 1 ! alter data value for fun

 CALL MPI_GATHERV(sub, SIZE(sub), MPI_INTEGER, twin, counts,
 > displ, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

 IF (rank.EQ.0) THEN
 WRITE(*, '(/,A)') 'The twin array after -1:'
 WRITE(*, '(8i4)') ((twin(n,m), m=1,8), n=1,6)

 % mpif90 contig_2d.f
% mpirun -n 4 ./a.out

My rank is 1
 13 19
 14 20
 15 21
 16 22
 17 23
 18 24

My rank is 2
 25 31
 26 32
 27 33
 28 34
 29 35
 30 36

My rank is 3
 37 43
 38 44
 39 45
 40 46
 41 47
 42 48

The big array:
 1 7 13 19 25 31 37 43
 2 8 14 20 26 32 38 44
 3 9 15 21 27 33 39 45
 4 10 16 22 28 34 40 46
 5 11 17 23 29 35 41 47
 6 12 18 24 30 36 42 48

My rank is 0
 1 7
 2 8

7

NASA USRP – Internship Final Report

39
40
41
42

 END IF

 CALL MPI_FINALIZE(ierr)
 END PROGRAM

 3 9
 4 10
 5 11
 6 12

The twin array after -1:
 0 6 12 18 24 30 36 42
 1 7 13 19 25 31 37 43
 2 8 14 20 26 32 38 44
 3 9 15 21 27 33 39 45
 4 10 16 22 28 34 40 46
 5 11 17 23 29 35 41 47

Acknowledgments
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was

sponsored by NASA Undergraduate Student Research Program (USRP) and the National Aeronautics and Space
Agency. Howard Nguyen would like to thank his mentors Karen Willacy and Mark Allen for the opportunity to
work on this project and for creating a very welcoming and productive atmosphere. He would also like to thank
Michael Black, the systems administrator at Caltech, for answering his questions and setting up compiler paths on
the supercomputer at Caltech.

References
1 Prather, J. M., “Numerical Advection by Conservation of Second-Order Moments,” Journal of Geophysical Research, Vol.

91, No. D6, May 1986, pp. 6671-6681.
2Shia, L. R., Ha, L. Y., Wen S. J. and Yung, L. Y., “Two-Dimensional Atmospheric Transport and Chemistry Model:

Numerical Experiments with a New Advection Algorithm,” Journal of Geophysical Research, Vol. 95, No. D6, May 1990, pp.
7467-7483.

8

	I. Introduction
	II. Overhaul
	III. Optimization
	IV. Future Work
	V. Conclusion
	Appendix
	Contiguous Data
	Acknowledgments
	References

