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Abstract. We describe a method for accelerating a 3D Monte Carlo forward radiative transfer model to the point where it can 
be used in a new kind of Bayesian retrieval framework.  The remote sensing challenge is to detect and quantify a chemical 
effluent of a known absorbing gas produced by an industrial facility in a deep valley.  The available data is a single low-
resolution noisy image of the scene in the near IR at an absorbing wavelength for the gas of interest.  The detected sunlight 
has been multiply reflected by the variable terrain and/or scattered by an aerosol that is assumed partially known and partially 
unknown.  We thus introduce a new class of remote sensing algorithms best described as “multi-pixel” techniques that call 
necessarily for a 3D radaitive transfer model (but demonstrated here in 2D); they can be added to conventional ones that 
exploit typically multi- or hyper-spectral data, sometimes with multi-angle capability, with or without information about 
polarization.  The novel Bayesian inference methodology uses adaptively, with efficiency in mind, the fact that a Monte 
Carlo forward model has a known and controllable uncertainty depending on the number of sun-to-detector paths used. 
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INTRODUCTION, CONTEXT & MOTIVATION 

Physics-based retrievals of atmosphere and/or surface properties are generally multi- or hyper-spectral in nature; 
some use multi-angle information as well.  Recently, polarization has been added to the available input from sensors 
and accordingly modeled with vector radiative transfer (RT).  At any rate, a single pixel is processed at a time using a 
forward RT model predicated on 1D transport theory.  Neighboring pixels are sometimes considered but, generally, just 
to formulate statistical constraints on the inversion based on spatial context.  Here, we demonstrate the power that could 
be harnessed by adding bona fide multi-pixel techniques to the toolbox.  This report is a digest of a full-length paper by 
Langmore, Davis and Bal [1].  The geometry of the hypothetical 2D remote sensing problem is described in Fig. 1 (left 
panel) and in Table 1. It is inspired by observations that could be used for certain nuclear treaty verification applications 
looking for signatures of covert processing.  They key challenge comes from the highly variable terrain. 

We thus need a forward RT model in 2D—sufficient for this demo, and easily extended to 3D—for the response of a 
single-wavelength imaging sensor.  The remote sensing data is a single image, as plotted in Fig. 1 (right panel).  It is 
used to infer position, size and opacity of an absorbing atmospheric plume somewhere in the valley in the presence of a 
partially-known/partially-unknown aerosol. The first necessary innovation we describe is the speed-up of a forward 2D 
RT model that predicts images with cross-pixel radiative fluxes fully accounted for.  In spite of its reputation for 
inefficiency, we use a Monte Carlo technique.  However, the adopted scheme is highly accelerated without loss of 
accuracy by using “recycled” Monte Carlo paths, a parametric technique recently used in biomedical imaging that is 
akin to dependent sampling methods [2].  This forward model is then put to work in a new kind of Bayesian inversion 
adapted to this kind of RT model where it is straightforward to trade precision and efficiency.  Retrievals target the 
plume properties and the specific amount of aerosol.  In spite of the limited number of pixels (namely, 15) and low 
signal-to-noise-ratio (SNR ≈5), we show that multi-pixel processing adds value to existing multi- or hyper-spectral 
remote sensing programs, and we suggest further developments that could be focused on specific sponsor interests. 



 
 

FIGURE 1.  Left: Schematic of the parameterized 2D scene and observation described in the main text.  Bayesian extremal values 
for the plume geometry and aerosol profile are plotted with black dashes; the baseline aerosol is in solid black while the “true” plume 

and aerosol are rendered in an orange hue.  Four typical Monte Carlo “particle” trajectories from the (solar) source to the imaging 
sensor are in blue: some intersect the actual (orange) plume, as well as many potential plumes, one grazes a number of possible large 
ones, and one intersects no plumes whatsoever. Right: Two flatland “images,” which are 1D functions: without (---) and with (—) 

the actual plume and –ve aerosol perturbation present; representative line-of-sight features are indicated (near/far terrain, plume, sky). 

FAST MONTE CARLO COMPUTATION WITH RECYCLED PATHS ILLUSTRATED 
WITH THE PARAMETERIZED 2D SCENE 

2D RT Equation and Associated Boundary Conditions (BCs) 

Let x = (x,z)T be position in the 2D domain M = {x ∈ (0,Hsky)×(–L/2,+L/2); z/Hter > 1–cos3(2πx/L)}, i.e., limited 
below by a “1–cos3” terrain, and let Ω(θ) = (cosθ,sinθ)T be a direction reckoned clockwise from the upward z-axis.  We 
take Hsky = 2Hter = 4 km and L = 2π km; see Fig. 1 (left panel).  We seek numerical estimates of certain values of the 
radiance field I(x,θ), which obeys the 2D RT equation in integro-differential form: 

 
 

Ω(θ)i∇ +σ (x)[ ] I = σ (x)ϖ (x) pv(x, ′θ −θ)
−π

+π

∫ I(x, ′θ )d ′θ +Qv(x,θ) , (1) 

where σ(x) = σaer(z)+ σgas(x,z) is the extinction coefficient, ϖ(x) = 0.9 σaer(z)/ σ(x) is the single scattering albedo, pv(x,θs) 
≡ pv(θs) is the scattering phase function, dependent only on the scattering angle θs, and Qv(x,θ) is the volume source 
term, taken here to vanish identically; I(x,θ) thus models total (direct+diffuse) radiance.  For the background aerosol, 
we take σaer(z) = σ0exp[–(c0+δc)z] with c0 = 0.5 km–1 (2 km scale height), δc being an unknown aerosol perturbation, 
σ0 = 0.58 km–1; this yields to an aerosol optical depth of unity when δc = 0.  For pv(θs), we assume a double Henyey–
Greenstein model for 2D RT, f pHG(gf,θs) + (1–f) pHG(gb,θs) where pHG(g,θs) = (1–g2)/(1+g2–2gcos θs)/2π [3]; by setting 
(f,gf, gb) = (0.9,+0.8,–0.4) the phase function looks like that of a typical fine-mode particle population.   

The RT equation in (1) is complemented by the appropriate BCs.  For x ∈ ∂M, the boundary of M, we have 

 

 

Ω(θ)in(x) I = α(x) ps (x, ′θ →θ)
θn (x ) −π /2

θn (x ) +π /2

∫ I(x, ′θ )d ′θ +Ω(θ)in(x)Qs (x,θ) , (2) 

where α(x) is the local value of the surface albedo, ps(x, θinc→θout) ≡ ps(θinc→θout) is the phase function for reflection 
(a.k.a. surface scattering), and Qs(x,θ) is the surface source term.  We take: α(x) ≡  α(z) = 0.1 for 0 ≤ z < Hter/2, 0.5 for 
Hter/2 ≤ z < Hter, and 0 for Hter ≤ z < Hsky; and diffusely reflecting surfaces are assumed Lambertian, which in 2D reads 
as ps(x,θinc→θout ) ≡  Ω( θout )•n(x)/2. Lastly, we have Qs(x,θ) = δ(θ–π) for z = Hsky, and 0 otherwise, for an overhead sun. 

Apart from the aerosol property δc, the remote sensing unknowns define the purely absorbing chemical plume, 
which is parameterized as σgas(x,z) = kp if (x–xp)2+(z–zp)2 < ρp

2, and 0 otherwise.  The choice of the single wavelength 
captured by the small imaging detector illustrated in Fig. 1 is presumably informed by the known absorption spectrum 
of the molecule of interest.  Table 1 summarizes the unknowns of the remote sensing problem, along with some 
attributes of their Bayesian prior distribution.  Key combinations are its optical diameter 2kp ρp and “mass” ∝kp ρp

2. 



 
TABLE 1.  Summary of the unknown parameters in the simulated remote sensing problem.   
Parameter to retrieve Symbol Reference Truth Min Max Unit Prior Mean St. Dev. 
Plume’s x-position xp arbitrary +0.35 –0.5 +0.5 km uniform 0 0.204 
Plume’s z-position xp arbitrary 2.5 2.2 2.7 km uniform 2.45 0.102 
Plume’s radius ρp arbitrary 0.5 0.15 0.85 km uniform 0.5 0.143 
Plume’s absorption coefficient kp 0 0.5 0 ∞ 1/km Gamma 0.25 1/√8 
Aerosol perturbation δc 0 +0.15 –c0 +c0 1/km uniform 0 c0/√6 

The Path Recycling Technique for Circular Gaseous Plumes and a Varying Aerosol Load 

In path-recycling Monte Carlo, as well as in dependent-trajectory/sampling methods, one revisits a given and fixed 
path traced in space, here 2D space, and computes the probabilities of what actually happened as well as the probability 
of some alternative based on a change of certain parameters of interest.  The ratio of these probabilities is used to 
reweight the path, hence to recompute the predicted signal, in this case, the value of one of the 15 pixels in the image.  
The key difference between path recycling and dependent-trajectory methods is that, in the former case, all the paths of 
interest (i.e., those that end in detection) are stored on file, and this file is reread and reprocessed for each instantiation 
of the varying scene.  In contrast, conventional dependent trajectory schemes perform the reweighting “on the fly,” i.e., 
while the data in still in RAM.  Consequently, one can only compute a finite number of predefined parameter values 
within the usual dependent sampling framework while in path recycling the whole continuum of parameter values is 
accessible, and this is key to the Bayesian retrieval methodologies we explored. 

Specifically, to change plume size, position, and opacity, path recycling is just a matter of computational geometry: 
one only needs to know how to compute efficiently the intersection of a given segment and a given circle.  For the 
aerosol perturbation it is more involved, and details are described in Ref. [1].  If there is a specific sponsor need, there is 
no reason why path recycling cannot be implemented inside far more capable 3D Monte Carlo codes such as the I3RC 
community Monte Carlo code http://i3rc.gsfc.nasa.gov/I3RC_community_model_new.htm or DIRSIG http://dirsig.org. 

FAST MARKOV CHAIN MONTE CARLO FOR BAYESIAN SAMPLING OF THE 
5-DIMENSIONAL PARAMETER SPACE 

One could seek the set of single values of the 5 parameters in Table 1, with uncertainties, that jointly minimize the 
L2 difference between the observed signal—synthesized using the “truth”—and the one predicted iteratively by the fast 
path-recycling Monte Carlo. Instead, we used Bayes’ rule [4] to determine the 5-dimensional histogram of plausible 
parameter values based on a weak prior assumption on it (cf. Table 1) and the likelihood of the parameter-space sample, 
given the data.  This calls for an effective sampling of the 5-dimensional parameter space using a Markov Chain Monte 
Carlo (MCMC) technique such as the classic Metropolis–Hastings algorithm, which however proved to be too slow for 
the present problem.  This prompted the development of a novel MCMC algorithm specifically adapted to Monte Carlo-
based forward models (the “MC3” algorithm) where the cost of choosing to move to a new point in parameter space is 
managed by using predictions of lesser precision by known factors [5].  The resulting speedup is demonstrated in Fig. 2. 

 

 
FIGURE 2.  Left: Values of kp sampled by the classic M–H algorithm after 5 hours of CPU time. Right: Same for the MC3 method. 

 

The marginal distributions we obtained are displayed in Fig. 3, along with the samples used for the joint marginal 
distribution of kp and ρp where we note an anti-correlation originating from the direct dependence of the signal on kp 
times the chord of the path segment inside the plume.  Interestingly, the aerosol is better constrained than the plume. 

The MC3 algorithm is straightforward to extend to other parameters of the present 2D “demo” scene such as inherent 
aerosol properties (σ0 and {f,gf,gb}) or surface albedo (α), as well as to 1D aerosol-only scenes or to 3D cloud scenes. 
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FIGURE 3.  Top: Marginal posteriors (xp,zp). Middle: Same for (ρp,kp). Bottom: Same for δc and samples for (ρp,kp). 


