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The Observing Instrument

The Microwave Limb Sounder (MLS) is an instrument on the
NASA Earth Observing System Aura satellite, which was launched
14 July 2004 into a near-polar 700 km orbit. It passively observes
thermal emission from the limb of the atmosphere, in about 1000
channels. The antenna scans from about 100 km at the limb, to
the surface, every 26 seconds, with 148 integration periods per
scan. About 500 million measurements are taken every day. From
these we compute about five million estimates of atmospheric
parameters such as temperature and concentration of minor
constituents of the atmosphere, at 72 levels on 3500 profiles in the
orbit plane, every day.

An overview of data analysis methods used for this instrument was
presented in the Frontiers in Geomathematics section of the 2011
Joint Mathematics Meeting, in New Orleans.

See http://mls.jpl.nasa.gov for more information.



Radiative Transfer Equation

The clear-sky non-scattering radiative-transfer equation, in the
form we use it, is

dI (s; ν)

ds
+ α(s; ν) I (s; ν) = α(s; ν) B(s; ν)

where

• I (s; ν) is radiative intensity,

• α(s; ν) is the bulk absorption coefficient, which also depends
upon temperature, pressure, and composition at s,

• B(s; ν) is the Planck radiation function, which also depends
upon temperature at s,

• s is position along the path of radiation propagation, and

• ν is frequency.



Radiative Transfer Equation (cont.)

The Planck radiation function, in the form we use it, is

B(s; ν) =
hν

k
(

exp
(

hν
kT (s)

)
− 1
)

where

• h is Planck’s constant,

• k is Boltzmann’s constant, and

• T (s) is temperature.

From here onward, s and ν are frequently suppressed for clarity.



Radiative Transfer Equation (cont.)

The bulk absorption coefficient is

α(s; ν) =

Nf∑
n=1

fn(s)βn(s; ν)

where

• fn(s) is the volume mixing ratio of the nth chemical species,

• βn(s; ν) is the absorption cross section for the nth chemical
species, and

• Nf is the number of chemical species.

βn(s; ν) also depends upon the temperature and pressure at s,
upon spectroscopic properties of the nth chemical species, and
upon fn(s) for some species, e.g., H2O.



Radiative Transfer Equation (cont.)

The absorption cross section βn for the nth chemical species is

βn = Rn

√
ln 2

π
P

Nlines∑
j=1

10Snj L(xnj , ynj , znj)


where

Snj = Inj(300)
hcE`nj

k

(
1

300
− 1

T

)
log

[
Qn(300) tanh(hν/kT )(1 + exp(−hν/(kT )

Qn(T )(1− exp(−hν0nj/(k 300)))

]
,

and j ranges over all spectral lines that have significant
contribution at frequency ν.



Radiative Transfer Equation (cont.)

The spectral line shape function

L(xnj , ynj , znj) =
ν

ν0

{
1

π

∫ ∞
−∞

[ynj − Ynj(xnj − t)] exp
(
−t2

)
y2
nj + (xnj − t)2

dt +

1

π

ynj − Ynjznj

z2
nj + y2

nj

}

is related to the Voigt function, the real part of the Fadeeva
function w(z) = exp

(
−z2

)
erfc(−iz), which is the complex

generalization of the error function.

The point here is not for you to understand all the parameters and
details, but to be convinced that computing β(s; ν) is quite
expensive.



ln β for HNO3 at 200 K
The variation of β as a function of frequency is very different at
different frequencies. Features are broadened at higher pressures
and higher temperatures. Dotted lines are channel boundaries in
the MLS instrument.



Solution of Radiative Transfer Equation

The solution of the radiative transfer equation, for one frequency,
can be written

I (sm) = I (s0)T (s0, sm) +

∫ sm

s0

T (s, sm)α(s) B(s) ds ,

where

T (s, sm) = exp

(
−
∫ sm

s
α(σ) dσ

)
,

• I (s0) is space radiance, about 2.3 K,

• sm is the position of the observing instrument, and

• s0 is deep space at the other end of the observing path.
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Solution of Radiative Transfer Equation (cont.)

We integrate by parts, giving

I (sm) = I (s0)T (s0, sm) +

∫ sm

s0

T (s, sm)
dB(s)

ds
ds .

This is then approximated by a quadrature

I (sm) ≈ I (s0)T (s0, sm) +

Np∑
i=1

T (s, sm) ∆Bi ,

where Np is the number of points on the path of integration.



What The Instrument Observes

The instrument channels are not infinitesimally narrow. Each
channel measures radiation over a range of frequencies. The
response of each channel, as a function of frequency, was measured
in the laboratory before the instrument was launched. What the
instrument observes in a single channel is the average of the
incident radiation I (sm; ν), weighted with the channel’s filter
function, φc(ν):

Îc =

∫ ν2

ν1

φc(ν)I (sm; ν) d ν ≈
Nν∑
`=1

φc(ν`)∆ν` I (sm, ν`) ,

We call this frequency averaging.
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Pre-frequency Averaging

Returning to the solution of the radiative transfer equation, in the
transmissivity integral for one frequency

T (s, sm) = exp

(
−
∫ sm

s
α(σ) dσ

)
we decompose the bulk absorption coefficient α(σ) into two parts,
αs(σ) for chemical species for which β, and therefore α, have
strong variation as a function of frequency, and αw (σ) for those
having weak variation, giving

T (s, sm) = exp

(
−
∫ sm

s
(αs(σ) + αw (σ)) dσ

)
.

We abbreviate T (s, sm) to T for clarity from now on.



Pre-frequency Averaging (cont.)

Expanding, we have

T = T sT w = exp

(
−
∫
αs(σ) dσ

)
exp

(
−
∫
αw (σ) dσ

)
.

Omitting the initial condition I (s0)T (s0, sm) in the expression for
I (sm; ν), for clarity, the computed radiance approximation for
channel c , viz.

∑
` φc(ν`)∆ν`

∑
i Ti (ν`)∆Bi , thereby becomes,

after exchanging the order of summation,

Îc ≈
Np∑
i=1

Nν∑
`=1

(
φc(ν`)∆ν`∆Bi (ν`)T s

i (ν`)
)
T w

i (ν`) .



Pre-frequency Averaging (cont.)

Although the channels are not infinitesimally narrow, the Planck
function nonetheless has very little variation within one channel –
dB
dν ≈ −2.377× 10−11 K/Hz at 118 GHz and 200K, or
−2.28× 10−3 K across a 96 MHz channel – so the factor ∆Bi (ν`)
can be approximated by ∆Bic evaluated at the channel center, and
then removed from under the inner summation.

Considering the strong case alone, one can compute a
frequency-averaged incremental radiance due to species with
strongly-varying spectral features, at each point along the path,
giving, for the parenthesized term in the earlier inner sum

I s
ic ≈

Nν∑
`=1

∆Bi (ν`)φc(ν`)∆ν`T s
i (ν`) ≈ ∆Bic

Nν∑
`=1

φc(ν`)∆ν`T s
i (ν`) .



Pre-frequency Averaging (cont.)

We define “weak” to mean that βw , and therefore T w
i (ν`), do not

vary strongly within one channel as a function of frequency.
Without significant loss of accuracy, we can approximate T w

i (ν`)
by T w

ic , which is evaluated using some representative average βw
ic

for channel c , and remove T w
ic from under the inner sum, giving

Îc ≈
Np∑
i=1

∆Bic

Nν∑
`=1

φc(ν`)∆ν`T s
i (ν`)T w

i (ν`)

≈
Np∑
i=1

T w
ic ∆Bic

Nν∑
`=1

φc(ν`)∆ν`T s
i (ν`) .



Pre-frequency Averaging (cont.)

Substituting the previous result, we have the approximation used in
practice:

Îc ≈
Np∑
i=1

I s
icT

w
ic .

The calculation of Îc thus consists of

• computing incremental radiances I s
i (ν`) due to chemical

species with strongly-varying βs
ni (ν`), along the path for

several frequencies {ν`},
• averaging those incremental radiances at each point on the

path to get post-frequency-averaged incremental radiances I s
ic ,

• computing transmissivity T w
ic due to chemical species with

weakly-varying βw
nic , using pre-frequency-averaged βw

nic , and

• combining those results as shown here.



ln β for HNO3 at 200 K (again)
β for some species can be accurately modeled at some frequencies
using channel averaging, and for some it cannot. For example, β
for HNO3 cannot be accurately modeled as a channel average at
119 GHz, but it can be at 119.35 and 182.2 GHz.



Computing T w
ic

Return to

T w
i (ν) = exp

(
−
∫ si

s0

αw (σ; ν) dσ

)
and

αw (s; ν) =

Nf∑
n=1

fn(s)βw
n (s; ν) .

We replace αw (s; ν) by the channel-averaged approximation

αw
c (s) ≈

Nf∑
n=1

fn(s)βw
nc(s)

where

βw
nc(s) =

Nν∑
`=1

φc(ν`)β
w
n (ν`,T (s),P(s)) .



Computing T w
ic (cont.)

To compute βw
nc(T (s),P(s)), we evaluate and tabulate βw

n (ν`) at
the same frequencies at which the channel response was measured,
using the full line-by-line model, and average using the channel
response function, for several values of pressure and temperature.
We call this Pre-Frequency Averaging, or PFA.

αw
c (s) is evaluated by interpolating in those tables of
βw

nc(T (s),P(s)) using T (s) and P(s).

Evaluating βw
n (ν`) is quite expensive (billions are needed), but

computing the tables of βw
nc(T (s),P(s)) is an offline calculation,

repeated only when new laboratory measurements of spectral
characteristics are developed.



Example of frequency-averaged βw

βw is a smoothly-varying function of pressure and temperature.

lnβw
nc for HNO3 at 181.391− 181.455 GHz and 180− 300 K



Derivatives

To retrieve atmospheric parameters by solving the radiative
transfer equation, we use a Gauss-Newton method, as described in
the Frontiers in Geomathematics section of the Joint Mathematics
Meeting in 2011, in New Orleans. This requires derivatives of
radiance with respect to those parameters.

We solve for parameters on a specified grid, the points of which are
not necessarily on the integration path. We therefore interpolate
from a point p to a point s on the path using, for example,

fn(s) =
∑
p

µnp(s)fnp



Derivatives (cont.)

Returning to the solution of the radiative transfer equation, and
taking the derivative with respect to an atmospheric parameter xp

at the point p, we have

∂I (sm)

∂xp
= I (s0)

∂T (s0, sm)

∂xp
+

∫ sm

s0

∂T (s, sm)

∂xp

dB(s)

ds
ds+∫ sm

s0

T (s, sm)
∂2B(s)

∂xp ∂s
ds .



Derivatives (cont.)

Returning to the definitions of T and α, we have

∂T (s, sm)

∂xp
= −T (s, sm)

∫ sm

s

∂α(σ)

∂xp
dσ .

In the case of xp being the volume mixing ratio fnp of the nth

chemical species at p, where βn does not depend upon fn,
α(s) =

∑
n βn(s)

∑
p µnp(s)fnp, so the derivative with respect to

fnp simplifies to

∂T (s, sm)

∂fnp
= −T (s, sm)

∫ sm

s
µnp(σ)βn(σ) dσ .



Derivatives (cont.)

The derivative with respect to temperature is slightly more
complicated:

∂T (s, sm)

∂Tp
= −T (s, sm)

∫ sm

s

Nf∑
n=1

fn(σ)µTp(σ)
∂βn(σ)

∂T
dσ .

Therefore, to compute ∂T w
c

∂Tp
, we also tabulate ∂βw

nc
∂T for several

values of temperature and pressure, and interpolate in those tables
using T (s) and P(s).



Example timings

PFA per LBL per
Phase iteration iteration PFA/LBL

InitPTAN 0.33 0.33 1.0
InitR2 16.99 17.48 0.972
FinalPTAN 214.87 316.47 0.679
InitRHI 0.576 0.578 1.0
InitUTH 14.321 29.72 0.482
CorePlusR3 93.87 151.33 0.620
CorePlusR2 97.31 189.66 0.513
CorePlusR4AB14 146.15 405.17 0.361
CorePlusR4AB14B 148.42 413.17 0.359
Methanol 68.906 279.32 0.247
CorePlusR4AB13 52.84 103.42 0.511
CorePlusR4B 22.036 40.869 0.539
CorePlusR5 54.077 54.337 1.0



Conclusion

On one hand, we

• compute T using a line-by-line method for every β, then

• frequency average radiance only at the instrument.

On the other hand, we

• compute T s using a line-by-line method for βs , and T w by
interpolating in tables of pre-frequency-averaged βw ,

• compute frequency averaged incremental radiance I s
ic due to

T s at every point along the path of integration, then

• compute I s
icT w

ic and integrate along the path.

Exchanging the first for the second has been a profitable bargain,
and a sufficiently accurate approximation.
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