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The Radar Remote Sensing Concept

Object scatters
energy back to
radar

| Atlight speed, c
"

-;/\

« Much like sound waves,
radar waves carry
information that echoes
from distant objects

* The time delay of the
echo measures the
distance to the object

« The changes of the
message in the echo
determine the object
characteristics

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System

Government sponsorship acknowledged.



IEEE Chapter Presentation - Alaska

JPL

Jil Propudsion Laboratory

e m—— Why Radar Remote Sensing?

« The area to be investigated is too large, inaccessible or
hazardous (e.g., the Amazon basin, other bodies in the
solar system, around an active volcano) for in situ
observation.

« Remote sensing systems may be sensitive to aspects of the
environment that elude our senses.

« Remote sensing provides a mechanism to efficiently,
objectively* and quantitatively* monitor the processes that
govern changes to the environment either from natural or
anthropogenic causes.

* (albeit often with models and assumptions)
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Government sponsorship acknowledged.



IEEE Chapter Presentation - Alaska

JPL

Jil Propadsion Laboratory
Calfornia Institute of Technology

What do we want to measure with radar?

d Atmosphere Carbon Store

. Topography | —
. Geogr.aphy cm:;xm e
 Chemistry | [

« Composition

« Phase
* Dynamics

« Thermo-

« Hydro-

« Geo-

* Bio-
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Radar and Light Waves

Mllllmeters to meters wavelength * Radars operate at microwave
frequencies, an invisible part of the

electromagnetic spectrum
« Microwaves have wavelengths in the

millimeter to meter range
Posmon d .
\/ \/ « Like lasers, radars are coherent and

nearly a pure tone
A\ =

The Electromagnetlc Spectrum

?

Common Radar Frequency Bands

Band Ka | Ku X C S L P
Wavelength (cm) 1 2 3 6 12 | 24 | 75 Gamma-ray  ¥-ray isible '
M U N
Frequency 1 w
30 15 10 5125 2 0.4 Hagh Frequency Low Frequency
(G_CyCIeS/S) Short Yewelength Long ¥avelength

tiny 100’ s um mm’'stom’s
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Classic Radar Remote Sensing

« Invert the signal measurement to infer reflectivity using the “radar equation”

1 1 1
N e Ar W) g

|

Transmit Power Receive Antenna Area

l o

_ _ System Efficiency/Losses
Transmit Antenna Gain

v Receiver Temperature
Range (distance) v

NR = Pr - A
SNR = Pr - Gr(3) 1.7

Signal-to-Noise
Ratio

v

) « - Receiver Bandwidth
Radar cross-section or “Reflectivity

 Use reflectivity to infer geophysical parameter using models or ground
measurements
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Surface and Volume Scattering Models for Radar

We can model simple scattering
from particles or surfaces... Resonant .
c Optical
O na?——
)
Cross section of a large A §
sphere is its projected — & n S
area 7 3 L
O &

. A=a
Cross section of a large flat
facet goes as area squared
|
I
kreﬂ l:rrefl :
Einc — F" : _E:rans
Erefl Etrans trans |
“5 Etrans i : Einc |:;trans @
Kq K4 k2 \
I
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I
|
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Surface and Volume Scattering Models for Radar
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l Smooth surface Rough surface

P ol e

And we can develop intuition from Faceted rough surface

combinations of these elements... Random point model

Rayleigh Roughness
A

8 cos b;

oh <
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Types of Radar Sensors

Altimeters determine the height of a surface by measuring the round trip time it takes for
a radar signal to reflect from the surface to determine surface elevation

Sounders/Profilers measure the reflected power over range

Scatterometers measure the magnitude of the backscattered reflected energy from the
surface in the radar beam. The backscatter is related to both the surface composition,
through the dielectric constant, and to the surface roughness at the wavelength scale

Synthetic Aperture Radar (SAR) Imagers generate fine resolution backscatter
imagery, using the motion of the platform to synthesize a long antenna

Polarimeters generate backscatter measurements from multiple polarizations.
Polarimetric information helps distinguish surface roughness from surface composition
effects on the backscatter

Interferometers: interferometric systems generally require fine resolution, hence are
SAR systems. Data collected from different vantages determine topographic
information. In interferometric systems the parallax is typically much less than a pixel
so the topographic information is obtained from a phase measurement that makes
highly accurate parallax measurements possible. These phase measurements are then
converted into elevation measurements.

Copyright 2012 California Institute of Technology.
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Altimeters

« Radar altimeters are downward or nadir
pointing sensors that measure terrain
hy = hp —p elevation.
« Although the basic concept of altimeter
operation is very simple, in practice

ﬁ understanding the measurement is complex
B due to the fact that the terrain elevation is
A T e not constant within the footprint of the

antenna beam on the ground and the
manner in which microwaves backscatter
h from the terrain.

“1 ‘?‘»ﬁ'ﬂ ,t;,,! ,, »
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TOPEX-Jason 1-OSTM Altimetry
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Projecting Sea Level Rise
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“The projections do not include uncertainties in climate-carbon cycle feedbacks nor
the full effects of changes in ice sheet flow, therefore the upper values of the ranges
are not to be considered upper bounds for sea level rise.”
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CloudSat — 94 GHz Profiling Cloud Radar
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Ionospheric Sounding on ESA Mars Express

Mission/Goals

 Primary Goal: To characterize the surface and
subsurface electromagnetic behavior/variation in
order to elucidate the geology (Search for water,
material property, stratigraphy, structure, etc) at
global scales with penetration depth of up to 5 km.

» Secondary Goal: To characterize the ionosphere of
Mars

« NASA OSS, “follow the water”.

Technology Areas

 Large antenna size due to low HF operation
frequency)

» Complicated Matching networks due to wide
relative bandwidth (0.1-5.5 MHz)

» Low frequency (HF) operation close to ionospheric
plasma frequency

* Instrument calibration

* Requires specialized on-board and ground post-
processing algorithms for science data calibration

I 50us

E-*-.l ¥

100km
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Scatterometry for Ocean Winds

Physics of ocean scattering
Bragg resonance scattering
The geometry of the ocean’ s surface affects its reflectivity
Wind roughens the surface of the ocean

e Sigma-0 is affected by the wind speed and direction

— Higher wind speeds roughen the surface more, increasing sigma-0

— Wind direction aligned with the viewing vector have a larger sigma-0 than wind directions that
are perpendicular

e The sigma-0 of wind-driven ocean is a function of

— Polarization, incidence angle, wind speed, and relative wind direction
— Other things (salinity, sea surface temperature, swells, ...)

e Sigma-0 tends to increase as incidence angles decrease

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
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Geophysical Model Function

For a given polarization, incidence angle, and wind speed:
O, = A, + A cos( )+ A, cos(2x)

— Where y is the wind direction relative to the incident radiation, and A,, A;, and A, are
constants

— Higher order terms are used when developing the model function, but are less significant

e The model function is determined empirically by comparing sigma-0 measurements to
model wind fields and/or buoy measurements

* Vertical and horizontal
polarization differ

+ V pol tends to have

VV, 54 deg. incidence angle HH, 46 deg. incidence angle

o—o 4 m/s stronger backscatter than
Y| e=—=a5m/s
) —=6m/s H pO| )
=1 Al a—a7mis * H pol has larger upwind/
° [|[F—8mhs downwind asymmetry
—v 10 m/s ]
o >—> 15 m/s * V pol has larger upwind/
—+20mss crosswind asymmetry
35.0 ‘ ‘ ‘ 35.0 ‘ ‘ ‘
0.0 900 180.0 270.0 360.0 0.0 900 180.0 270.0 360.0

Azimuth Angle (deg) Azimuth Angle (deg)
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Scatterometers for Ocean Wind

» Motivation
« Obtain global wind vectors on a
daily basis

« Research, climatology, weather
operations

« Other applications
« Ice edge detection, land change
detection, snow cover, freeze/
thaw detection, flood detection
» Scatterometers are radar
instruments that measure the
reflective properties of the
Earth’ s surface

« A measure of radar reflectivity
is the normalized radar cross
section called sigma-0

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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SeaWinds

Beam geometry and polarization

Inner/Outer: H/V pol, 40°/46° look angle,
46°/54° incidence angle

RF: 13.402 GHz, Ku band, 185 Hz PRF

Swath width
1400/1800 km for inner/outer beam

-

-~ orbit track

SeaWinds

nadir track

2900 km

~
~

~
~

- cross track T ~~<
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Soil Moisture Active/Passive (SMAP)

NASA Decadal Survey Mission
L-band radar/radiometer

T
Freeze/Thaw from 1 km res SAR ¢ = o > ST T W
Every other_day — — - | A= L Pas T
.’1 o -
=
"y

| i
N Root-zone moisture,usrﬁa
' Radiometer, SAR, and model

BN cvery Shours
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Imaging Radar

-
e e
-

#~ Synthesized long antenna

CROSS-TRACK RESOLUTION
ACHIEVED BY SHORT

PULSE LENGTHS (HIGH
BANDWIDTH)

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.

I_f.-'-:"* REAL APERTURE
_ ; ALONG-TRACK
Big antenna -
small beam
SYNTHESIZED
APERTURE ALONG
TRACK BEAM

ALONG-TRACK RESOLUTION ACHIEVED
BY COHERENTLY COMBINING ECHOES
FROM MULTIPLE PULSES ALONG-TRACK
(SYNTHESIZE A LONG ANTENNA)

e RESOLUTION o ANTENNA LENGTH
e INDEPENDENT OF RANGE/FREQUENCY

Reaching Out and Touching our Solar System



IEEE Chapter Presentation - Alaska

JPL

Jil Propudsion Laboratory
CaBlomia Institute of Technology

Magellan Mission to Venus
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Radar Imaging Properties

* Radar images are distorted
relative to a planimetric view

» Slopes facing toward or away
from the radar appear
foreshortened

+ Steep slopes are collapsed
into a single range cell called
layover and areas occulted by
other areas are said to
be shadowed

Foreshortening

* Radar is primarily sensitive to
the structure of objects being
imaged whereas optical
images are primarily sensitive
to chemistry

o \
A%”
‘@ “ M « The scale of objects relative

Smooth Rough Mountains Forest to the radar wavelength

Surface Surfaces Area determines how smooth an
e X object appears to the radar
and how bright or dark it is in
the imagery

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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Wavelength - A Measure of Surface Scale

Light interacts most
strongly with objects on
the size of the wavelength

S C (6 cm) N
W \§~ 3

AR ALY

EE%E

Forest: Leaves reflect X-band
wavelengths but not L-band

Dry soils: Surface looks
rough to X-band but not L-
band

Ice: Surface and layering look
rough to X-band but not L-band

Reaching Out and Touching our Solar System
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Visible (Upper) and Radar (Lower)

Nile in Sudan Showing Ancient Nile Course |

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
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Surface Orientations and Properties

Wave Polarization Polarization Filters

VERTICALLY POLARIZED

3

Color figures from www.colorado.edu/physics/2000

HORIZONTALLY Vertical polarization Horizontal polarization

FOLARIES passes through does not pass through
horizontally arranged horizontally arranged
absorbers. absorbers.

Mostly horizontal polarization
is reflected from a flat surface.

Copyright 2012 California Institute of Technology. . e e :
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San Joaquin Valley, California

Applications: soil moisture estimation,
vegetation classification LHH-Red LHV — Green LVV - Blue

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.

Reaching Out and Touching our Solar System




IEEE Chapter Presentation - Alaska

JPL

Jil Propadsion Laboratory
Calfornia Institute of Technology

SIR-C/X-SAR Views Sea Ice

Multi-frequency, multi-polarization radar can measure the
extent thlckness and morphology of the polar ice pack

Red CHH Green LHV BIue LHH Weddell Sea, Antarctica

Copyright 2012 California Institute of Technology.
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Phase and Radar Interferometry

» Interferometric phase is simply another means of measuring distance.
Traditional stereoscopic measurement of the “parallax,” or relative
displacement an object has from two stereo images, is proportional to the
height of the object and the separation between the two imaging points

* For SAR systems, the parallax is the range difference from a point to the

two observation antennas

_Ap-‘
27T 47
1 A 2 A
¢ = 2 %

- / (- -/

Radians per wavelength Number of wavelengths

Phase measurements in
interferometric systems can
be made with degree-level
accuracy, and with typical
radar wavelengths in 3-80 cm
range this corresponds to
parallax measurements
having millimeter accuracy

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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Surface Complexity

The phase of the radar signal is the number of cycles of oscillation
that the wave executes between the radar and the surface and back
again.

Number of cycles

The total phase is two-way range
measured in wave cycles + random
component from the surface

Collection of random path
lengths jumbles the phase of
the echo

Copyright 2012 California Institute of Technology.
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Radar Interferometry

« Radar has a coherent source much like a laser
« The two radar (SAR) antennas act as coherent point sources
« When imaging a surface, the phase

fronts from the two sources interfere SAR 2

A
B

« The surface topography slices the
interference pattern

SAR 1

~

___....._..__..__‘_._.__.__________.__._./.\

T

« The measured phase differences record the topographic information

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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Interferometric Phase Characteristics

Pixels in two radar images observed from nearby
vantage points have nearly the same complex phasor

\"
. representation of the coherent backscatter from a
Radar resolution element on the ground but a different
Interferometer 0 propagation phase delay
2 Angular separation << 1 degree
0 Coherent sum nearly unchanged
g
Abel(pb
Image Pixel/
Resolution Element
Image Pixel/Resolution Element
i<Zp i=p
A i, A iy, T
s, =Ae e s, =Ae""e

ibb ,— 15 —igy i 4T A (o
Sint — 5153 S Abew{’e X plAbe wﬁ'e?’ P2 — Age’l = (p2—p1)

Coherent backscatter term that is random from cell-to-cell cancels leaving phase that
depends on differential path length!

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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Shuttle Radar Topography Mission (SRTM)

SRTM image of Yucatan showing Chicxulub
Crater, site of K-T extinction impact.

3-dimensional SRTM view of Los Angeles (with

Landsat data) showing San Andreas fault
Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System

Government sponsorship acknowledged.
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Hardware and Electronics

JPL SHUTTLE RADAR TOPOGRAPHY MISSION
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C-Band Main Antanna
* Edis om ASP nat updated /’ o
pat " -

L-Barwd bain Antenns
" GPS Antemnn
W35
M
F o L
¥ hnbenna

Btucture
[XTSAAS)

e = By Y St Trackoe|STA)
Am-nn.n/‘ . TR o e - = Axiro Targed
R | . L Timchar (ATT)
Cmniater
ADDA Support
Truthosnd

Pansl [ASP)

Buppart
Struschoe (D55) Artarna Trunion
Amiwnna s o
— Core Structure (LAY "“'\
{ACS) e =84 e T
Filp Hingn Antenna Trumion (ATS) e, I g%

LED Targets (OTA) _ C-Bond
. ' i

Aniemns

AFT
Elactronica
Panel [AEF]

Anterimp

GRS Anienne CRBEiFGflEa Elsatranies

Mast Length: 60 m
Mast + Cannister Mass: 1000 kg
Total Payload Mass: 13,600 kg

Total Data Volume over 10 days: 12.3 TB

CSpyright )2 [Caldoridiza hitinats ot Te 39,0 y.
Government sponsorship acknowledged.

keaching Out and Touching our Solar System



IEEE Chapter Presentation - Alaska

Hfm!’w Shuttle Radar Topography Mission

Mast Characteristics

Electronic Distance

Inertial Reference
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Star Tracker
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Summary Height Error Histograms
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Data Collection Approaches

Single Pass

* Interferometric radar data can be collected
in a single pass interferometry (SPI) mode
where both antennas are located on the
same platform. One antenna transmits and
both antennas receive the
returned echoes

27T

vy

(/02 - /01)

Copyright 2012 California Institute of Technology.
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Repeat Pass

In the repeat pass mode (RPI) two spatially close
radar observations of the same scene are made
separated in time. The time interval may range from
seconds to years

Temporal decorrelation — scene changes
between observations

Propagation delay variations — changes in
troposphere or ionosphere between observations

Reaching Out and Touching our Solar System
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Mt UAVSAR: NASA’ s New Airborne Radar

Science and Technology Testbed

Salient Features

Robust repeat pass interferometry for deformation
measurements

Fully polarimetric at L-Band (1.2 GHz,80 MHz BW)
Initial tests on NASA’ s Gulfstream III

Plan for transition to UAV platform

Steerable electronically scanned array antenna

Flight path controlled to be within a 10 m tube
using real-time GPS and modified autopilot

Autonomous radar operation in flight
Flexible, light-weight, reconfigurable design

Instrument Volcanic
Pod Internal Surface
Layout Deformation

Science

Global and regional volcanic inflation, flooding, land and coastal erosion, fault strain, fire hazard,
tectonic strain, precision topography

Local continuous observation of deformation for prediction of eruption, landslide and flooding
Provide crustal structure, high temporal resolution, regional deformation processes for increased

prpdirfahilih/ of pari‘hqllakp and volcanic ari‘ivify
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April 4, 2010 M 7.2 Baja California Earthquake

Airborne repeat-pass InSAR for geode

=i i B Ay
| 14 - e f ST
1
g

tic imaging

¥
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P Radar designs for proposed mission being studied in

o \ pre-Phase A

e L-band 5-80 MHz BW Quad-pol Radar
/ 9-15 m mesh reflector
TDRSS

12-24 element transmit and receive array
commlink

12-24 dual-pol receive channels
180-360 km swath, full res, full-pol
Better than -25 dB NESO at 20 MHz BW

Copyright 2012 California Institute of Technology.
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Radar Design to Meet Critical Requirements

Repeat Period requirement for Deformation science drives the Radar Swath
8M-day Repeat Period => 360/M-km Swath Width

Sensitivity requirement for Biomass (cross-pol) measurement drives Antenna
Size and Radar Power

Accuracy requirements for Deformation and Biomass drive Electronics &
Mechanical Stability and Calibration

A new SweepSAR technique was adopted as a means to achieve much wider
swath than conventional SAR strip-mapping, without the performance
sacrifices associated with the traditional ScanSAR technique

Conventional ScanSAR: y

non-uniform along-track d
sampling <

-

Resulting degradation in \
effective azimuth looks : e,
does NOT meet proposed B '

Conventional StripMap:
<~70km Swath

v

Resulting ~40 day repeat
does NOT meet
proposed Deformation
and lce Science

Requirements

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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"New SweepSAR Technique to Meet Science Needs

« On Transmit, all Feed Array elements are
illuminated (maximum Transmit Power),
creating the wide elevation beam

» On Receive, the Feed Array element echo
signals are processed individually, taking
advantage of the full Reflector area
(maximum Antenna Gain)

Uses digital beamforming to provide wide
measurement swath

DBF allows multiple simultaneous echoes in
the swath to be resolved by angle of arrival

Uses large reflector to provide high aperture
gain
Full-size azimuth aperture for both transmit and

receive
Full-sized elevation aperture on receive

Only need data from feed array elements
being illuminated by an echoes

These elements can be predicted a priori

Note: Transmit and Scanning Receive events
overlap in time and space, Along-track
offset shown is for clarity of presentation only.

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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Animation of SweepSAR Concept

National Aeronautics and Space Administration

5th Annual Military Radar Summit

Earth Orbiting Radar
Simulated Operations Concept

Approved for unlimited release CL# 12-0576
Eric M. De Jong, Paul A, Rosen, Michael Stetson, Koji Kuramura, Jason Craig,
Zareh Gorjian, Peter Xaypraseuth, Ryan J. Ollerenshaw, Shigeru Suzuki,
Solar System Visualization Project,
Jet Propulsion Laboratory, California Institute of Technology.
Artist rendering of spacecraft based on publicly available information

Copyright 2012 California Institute of Technology.
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Titan Observation Geometry

SAR imaging takes place from around £16 minutes from closest approach with
altitude Titan ranging from 4000 km to 1000 km.

000 KM 9000 km
== m =TT A= === _ __ 30min 25000 km
- ; ST = ~o< _ 70min
Closest Approach| ;g8 ((\exeﬂ,./"" RN
For Titan Passes | X ?\'&S,fz\(@?,f B
950-1500 km .,"99_,f‘RaQ\_9YQ-—-" 300 min

itan:
Only moon with significant
atmosphere (N,)

Infrared Images of Titan

-~ - - Surface Temperature: 85°K
Radius: 2575 km

Surface: Methane and other
hydrocarbons ices and liquids

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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Cassini Radar Results

0 125 250 500 750 1,000
km

South Pole

SARG,

.2 dB

=20 dB
Topography
P S00 m

1500 m
SAR Inc.
B 50°

- 10°

B Filled
) Partially-Filled
mm Empty

Radar Backscatter Surface Map on Infrared

£l 300 244 (£:11) 120 &0 ]
West Longitude

Wye et al. (Icarus, 2007)
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Lakes on Titan

« Although not suitable for swimming at 77°K, the Cassini radar
detected the first liquid surfaces in the solar system not on Earth.

« These lakes are composed of liquid hydrocarbons like methane.

' L]

Copyright 2012 California Institute of Technology.
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artimniees  TiMEline of Major Mission Events During
Curiosity's August 5, 2012 Landing

Sky Crane Detail = Time Event
Cruise Stage Separation Occurrence
2 Received on Earth
*“* Cruise Balance Devices Separation ey (PDT)

e

Entry Interface | - [10:24:33.8 PM]
! : Atmospheric Entry
i” Heat Shield § _
\ Peak Heating Separation [1028530 PM]
,"  Peak Parachute Deploy

S [10:29:12.7 PM]
Heat Shield

Separation

[10:31:26.7 PM]
Rover Separation
(from Descent Stage)

[10:31:45.4 PM]
Touchdown

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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Terminal Descent Sensor (Radar) Physical Configuration

Digital
Stack

X Transmit/Receive
RF Power Divider & s = N Modules (6)
Combiner modules g

53 m (20.8")

Antenna

Copyright 2012 California Institute of Technology.
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Terminal Descent Sensor (Radar) Flight Model

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
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Key TDS Technologies

Transmit / Receive Modules: Ka-band microelectronic hybrid
circuits. 2W peak power, 7-9 dB noise figure, fast switching
speeds (sub-10m minimum range)

Mars Ssance Labortony

Tarminp! Descent Sanaod (TEES)
Transmil Recelve Moolls (TRM)
Ersgnaesing Davelopmisn Unit SM00
72023 Hev G 1807

Antennas: six individual slotted waveguide
antennas built by EMS-Atlanta (now
Honeywell) — 22 cm diameter, 1 cm thick

Single Board Digital
Subsystem: SPARC
onboard computing, -
Xilinx-based onboard ey [
10000x data reduction il |

and processing,
telemetry acquisition, and
all radar timing

Copyright 2012 California Institute of Technology. Reaching Out and Touching our Solar System
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EM Radar of Radar on Descent Stage

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
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Assembling the Powered Descent Vehicle

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
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At Kennedy Space Center

Copyright 2012 California Institute of Technology.
Government sponsorship acknowledged.
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Extensive Field Testing of TDS Throughout Flight Envelope

Copyright 2012 California Institute of Technology. - -
e S e e T e Reaching Out and Touching our Solar System




IEEE Chapter Presentation - Alaska

JPL

Jil Propadsion Laboratory

Carss e Tk Some Animations
http://mars.jpl.nasa.gov/multimedia/videos/movies/mardisplit20120821/mardisplit20120821-1280.mov

What It’s Like to
Land on | Mars

Copyright 2012 California Institute of Technology.
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Carss e Tk Some Animations
http://mars.jpl.nasa.gov/multimedia/videos/movies/msl20120810 mardi/ms120120810 mardi-1280.mov

Dropping in on Mars

nHigh-Res ...

L

— i
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Radar, JPL, and Alaska

JPL enjoys a long history of collaboration |
with, and observations of, Alaska!

» The Radarsat Geophysical Processor System was
developed by JPL in the 1990s and installed for
operations at the Alaska SAR Facility

« Conducted joint study of digital elevation mapping
of Alaska using JPL TOPSAR data ERS-1/2 tandem
observations

« JPL AIRSAR and UAVSAR data are presently
distributed from the ASF Distributed Active Archive
Center

« JPL presently working with ASF personnel to
reprocess historical SeaSAT SAR data

 Collaborative work includes calibration activities of
numerous SAR data sets using corner reflectors
installed at Delta Junction, AK, ionospheric effects
on long-wavelength SAR with UAF (F. Meyer)

measures/measures_visualizations#

"(Moxey et
al. 2002)
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Summary

« The NASA/JPL radar program is a broad-based, science-
driven research and development effort.

 Science requirements lead to specific sensor and mission

configurations offering first of a kind capabilities to the
nation.

« Generation of the source of illumination by radar
instruments allows a degree of control that is as close to

reaching out and touching the object as possible in the
context of remote sensing.

Copyright 2012 California Institute of Technology.
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Magellan Map of the Surface of Venus

Composite image of one Cycle (about 2000 orbits) of Magellan imagery

330 360

0 30 60 80 120 150 180 210 240 270 300 330 360
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SPL Coupled Airborne and Spaceborne

Jet Propulsion Laboratory

ol e Tt Radar Programs

Rocket Radar
mounted on NASA
CV-990. (L-band
only.)

PO T r——— gy o Pty Visrmsdey, &3 VN ji
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Digital SAR Processor

Digital Recorders
C-band ATI

and XTI

and POLTOP

Solid State
Amplifiers
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