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This paper describes recent work done in modeling and simulation of anchoring processes
in granular media, with applications to anchoring on a Near Earth Object (NEO), where
the forces due to interactions with the regolith are much stronger than the local surface
gravity field. This effort is part of a larger systems engineering capability developed at JPL
to answer key questions, validate requirements, conduct key system and mission trades,
and evaluate performance and risk related to NEO operations for any proposed human or
robotic missions to a NEO.

Nomenclature

∇Φ Jacobian Matrix
F Force, N
m Mass, kg
∆x Variable displacement vector
α Acceleration, m/s2

ρ soil density
g local gravity magnitude
p normal pressure
φ soil friction angle
m0 the initial mass of the anchor
σc maximum soil compressive stress
Nc,g,q soil bearing capacity factors
sc,g,q anchor shape factors
Fc cohesion force
A Hamaker coefficient (4.3× 10−20[J ])
S is the surface cleanliness parameter, in the range [0.1, 1]
Ω 1.5× 10−10[m]
R reduced radius R = r1r2

r1+r2
A,B bodies in contact
q generalized coordinates
r position vector
ε quaternion parameter
ω angular velocity
ni normal at the contact pointing toward the exterior of body
ui,wi vectors in the contact plane
γ̂i,n,u,w contact multipliers
Fi,N normal component of the contact force acting on body B
Fi,T tangential component of the contact force acting on body B
vi,T relative tangential speed
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µi,s static friction coefficient

Subscript
i body index

I. Introduction

NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing
experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain
stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to
deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the
simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity
conditions and testing in low gravity environments, whether artificial or in space is costly and therefore
not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to
analyze the problem at hand.

Effective NEO exploration requires vehicle/astronaut anchoring due to extremely low gravity. Simula-
tion and testing must be carried out with implications on system/mission design, system verification and
validation, design of combined vehicle/human/robot teams, design of proximity operations such as: landing,
tethered operations, surface mobility, drilling, sub-surface sampling. EVA (Extra-vehicular Activity) requires
innovative tethering/anchoring techniques for the astronauts to move in the vicinity of a Small Body. In all
these cases, a motorized winch network may provide support for astronaut surface operations. A motorized
winched network also provides the vertical reaction force needed for drilling and sample collection. Robot
arm sampling device interactions with terrain during sample collection also need to be understood. Hop-
ping/crawling robots may interact with regolith material on surface of NEO and can hop at various angles
with adjustable strengths to achieve a desired vertical height or horizontal distances. In all these cases, an
anchoring process is involved. Anchors may be used as hand or footholds, or possible attach points for ropes
that hold an astronaut or equipment to the surface.

In this paper, using an analytical approach to soil interaction and a simulation package capable of utiliz-
ing massively parallel GPU hardware (Chrono::Engine33 ), several validation experiments were performed.
Ultimately, the outcome of this effort would be an analysis of several different anchor designs, along with a
recommendation on which anchor is better suited to the task of anchoring.

In the following, Section II describes the approach considered in this study. Section III discusses aspects
of the regolith modeling, and section IV the analytical modeling of the forces acting on a penetrating object.
Section V describes the equations of motion of the multibody anchoring system. Section VI discusses the
modeling of the inter-body contact and friction forces involved in the simulation of the anchoring process.
Section VII summarizes and discusses simulation results, and Section VIII concludes the paper.

II. Description of Approach

To provide context, the study approach is built upon an integrated set of physics-based models as illus-
trated in Figure 1. The focus of this paper is on the right side of this block diagram. The block diagram
shows each element of the integrated model of spacecraft and end-effector dynamics,6 which includes the
models of: the planning function, where the spacecraft trajectory and attitude are specified; the vehicle
attitude and orbital dynamics; the vehicle GNC functions, including orbital and attitude estimator and
navigation filters; the deployable manipulator dynamics and hinge actuation; the end-effector, anchoring, or
in-situ sampling device dynamics and actuation; the Small Body shape, orbital dynamics, and polyhedral
gravity models; the communication, power, and lighting geometric analysis; the multi-scale properties of
the surface regolith; and the interaction of the end-effector, anchoring, or in-situ sampling device with the
surface regolith. The block diagram includes feedback loops to the spacecraft controller from the hinge states
of a deployed robotic manipulator, the end effector states, and the amount of mass collected, assuming all
these states are known. If not known, they can possibly be estimated. The reason for including these addi-
tional functions is that sensing these states are all possibilities in a scenario where an algorithm is needed
to monitor the duration of the sample event (dwell time), and a change in each one of these states can be
used as a trigger to terminate the event. Previous work which proposes an adaptive capability for surface
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sampling is described in,26.27 For instance, monitoring the flow of collected mass via a photocell will signal
that indeed exogenous matter has entered the spacecraft system, and the event collect sample can now be
terminated. A change of relative attitude of the end effector or boom angle (or hinge angle) with respect
to the spacecraft attitude (as measured with respect to the surface plane) will indicate that the end effector
has indeed contacted the ground.

Figure 1. Anchoring GNC block diagram.

An important element in the understanding of the anchoring penetration process is the physics of the
regolith, which is described next.

III. Regolith Modeling

Present understanding is that all asteroids that have been observed at close range appear to be covered by
meters of strength-less regolith, in which case the anchor pull-out capacity is dependent on the weight of the
overlying material. In general, large asteroidal bodies typically spin slowly and may have more strengthless
material on the surface than smaller bodies, which tend to spin faster. This understanding implies that,
in general, slow anchoring methods such as those based on drilling or melters will require the spacecraft
Attitude Control System (ACS) to be involved for vehicle stabilization. Conversely, fast anchoring method
such as those based on tethered spikes, telescoping spikes, and multi-legged with tethered or telescoping
spikes will likely require less ACS involvement. Early studies on anchoring for the ST4/Champollion mission
selected a 1 kg 1.9cm diameter truncated cone penetrator for anchoring onto the surface on materials of
strength up to 10 Mpa with a 45 degree impact angle within a reasonable velocity range (100-200 m/s) with
a minimum pullout resistance of 450 N in any direction. Several anchoring deployment/retrieval issues must
be carefully considered that can impact the mission design. An anchor may ricochet adversely on surface
instead of solidly emplacing on ground. Also, drilling a helical anchor requires a torque transfer to another
object. PHILAEs landing gear uses ice screws and three landing legs with two pods in each, for example.
Harpoons can be easily launched before landing. More than one anchor needs to be deployed from the
spacecraft to ensure static stability. Spacecraft ACS (reaction wheels, not RCS) will probably need to be on
during the Anchoring Phase to avoid slack cables and vehicle stability problems. Some anchor designs will
allow them to be pulled out, others will not.

Behavior of the regolith is likely governed by cohesion and surface adhesion effects that dominate particle
interactions at small scales through van der Waals forces. Electrostatic forces are are generally negligible
except near terminator crossings where it can lead to significant dust transport. The micro-gravity and
solar radiation dominate system behavior prior to soil engagement or penetration. Figure 2 summarizes the
essential differences between the environment at a NEO and the environment at the Moon.

Soil mechanics experiments have known issues when it comes to testing samples of regolith in one-g. First,
a reproducible preparation of a homogeneous soil sample is difficult to achieve. Second, a characterization of
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Figure 2. Differences between NEO and Moon.

the soil properties in depth is difficult, since static parameters are typically measured at the surface. Third,
under 1-g load, according to soil theory, the compressive strength in depth is significantly influenced by
overburden terms, i.e. the effective strength/resistance increase with depth. The soil shear stress can be
modeled as

σc = c+ p tan(φf ) (1)

This is the Mohr-Coulomb limit soil bearing capacity theory, where φf , is known as the friction angle
(or internal-angle-of-friction), p is normal pressure, and the zero normal-stress intercept, c, is known as the
cohesion (or cohesive strength, i.e. shear stress at p=0) of the soil. For typical regolith simulant, the cohesion
is 40 Pa at loosely packed conditions and increases to 10 kPa at 100 relative density. The friction angle also
increases monotonically from 25 deg to 60 deg. The Rosetta Lander design takes advantage of this effect
of greatly increased cohesion by local compression of the cometary regolith under the landing pods during
landing. Previous relevant regolith modeling work,7 and14 covers both low-velocity ( approx. 1 m/s) impact
of blunt bodies into dust-rich, fluffy cometary materials (Biele et al7), as well as high-velocity (approx. 10
m/s) impact of sharp projectiles on various types of soil. (Allen1 and Anderson et al3). The lower limit of
the tensile strength is of the order of 1kPa whereas the probable upper limit can be taken as 100kPa. The
lower limit of tensile strength corresponds to a compressive strength of c ≥ 7kPa. This wide range of soil
properties must be capture in simulation, which poses a significant challenge.

At very low gravity and vacuum conditions the biggest unknown is the material strength of the surface
material. Neither the Deep Impact mission nor other comet observations have provided firm data on the
strength of cometary material. Theoretical considerations and laboratory measurements for weakly bound
aggregates and the few observational constraints available for comets and cometary meteoroids lead to
estimates of the quasi-static tensile (or shear) strength of cometary material in the dm to m range as of the
order of 1kPa, while the compressive strength is estimated to be of the order of 10kPa. In the following, we
summarize the current state of knowledge in asteroidal and cometary regolith behavior.

• Cohesion, tensile, shear and compressive strength: While for brittle materials tensile strength is gen-
erally less than the shear strength, compressive strength is about one order of magnitude higher than
tensile strength. In the case of soft landing compressive strength is the relevant parameter. Shear,
tensile and compressive strength are indicated by σs, σt, σc, respectively.

• Dynamic and quasi-static strength: During impacts, due to very high strain rates, the dynamic strength
is typically higher than the quasi-static strength. It is known that the strength increases with strain-
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rate resulting in values about an order of magnitude higher (or even more) than the quasi-static strength
for the same material. Generally the tensile strength σt is proportional to a power b of the strain rate
ε̇ with a power law exponent typically around 1/4 to 1/3, depending on the material.

• Size dependence: Different theories indicate that the strength decreases with increasing size according
to d−q where the exponent q is approximately 0.5 (fractal aggregate with fractal dimension D = 2.5
of ice). Thus, if extrapolated from typical lander (0.1m), or impactor (1m) to typical comet (1 to 10
km) scales, the size effect alone would produce a factor of 100 in the apparent strengths. This is in
line with the observation that comets can often be described as essentially strength-less bodies (large
cometesimal, rubble pile, swarm models) globally, while locally a significant material strength is to be
expected.

• Breakup of Comets, Topography Observations: Tidal disruption of comets indicate low global tensile
strengths in the order of 100÷10, 000 Pa. For example, the break-up of Shoemaker-Levy 9 during
its perijove in 1992 set a rough upper limit of the tensile strength (on global/km scales!) of 100Pa.
The tensile strength of sun-grazing comets has been estimated as 10kPa with some uncertainty due to
thermal stresses. Images by Stardust from comet 81P/Wild-2 showed that the cometary surface must
have a finite strength on short scales (< 100 m) to support the observed topographic features; because
of the small gravity, some 10P a might suffice. Otherwise, only lower bounds on the tensile strengths
are available in the order of 1 . . . 100 Pa.

• Breakup of Meteoroids: Another source of information about possible strength values of cometary
surfaces on mm ÷dm scales stems from the analysis of meteoroids associated with certain comets which
enter the earth atmosphere at high speeds and finally break-up and create a light flash. Wetherill36

gives values for tensile strengths of these fireballs ranging from 1 kPa to 1 MPa. More recently, Trigo-
Rodrguez and Llorca34 have studied a broad data base of meteor ablation light curves and arrive at
tensile strengths between (400 ± 100 Pa and 40 kPa, clustering around 10kP a for not too evolved and
rather low density < 1g/cm3 (if known) cometary meteoroids.

• Laboratory Measurements: The small scale (cm) shear and tensile strength of snow in the relevant
density range of 300 ÷ 500 kg/m3 is of the order of 10 ÷ 100kPa. The tensile strength of snow is
nearly independent on temperature, while the compressive strength shows a remarkable increase with
decreasing temperatures. Simulating possible cometary analogue material in the scope of the KOSI
experiments concluded that the small-scale compressive strength of porous mixtures of crystalline ice
and dust lies in the range between 30kPa and 1MPa with increasing strength for an increasing dust
fraction.

• Limits Derived from Comet Size and Rotation: Stability against disruption due to rotation yields lower
limits for the combination of bulk density and tensile strength. Rotational periods and sizes for many
comets are known, but the corresponding bulk densities are not well constrained. For example, a fast
rotating big comet such as C/Hale-Bopp (1995 O1) could be a strength-less rubble pile with a bulk
density as low as 100 kg/m3.

• Theoretical Estimates: There are different approaches to describe the tensile strength of powders on
the basis of van der Waals interactions, cf. Greenberg et al.,11 or Chokshi et al.? The latter model
includes the elastic deformation of contacting spherical grains. The theoretical tensile strength of fluffy
aggregates depends on particle radii, contact areas, packing geometry and typically scales with the bulk
density. Greenberg et al. estimate a tensile strength, for interstellar silicate dust/ice material with a
density of 280kg/m3, of 270 Pa. Sirono and Greenberg29 derive 300 Pa for the tensile and 6000 Pa
for the compressive strength for a medium composed of ice grains linked into chains by intermolecular
forces. Kuhrt and Keller16 derive a theoretical strength of 100Pa and 100 kPa for grains of 1mm
and 1µm, respectively. Note that 95% of the Deep Impact ejecta dust cross section is represented by
particles r < 1.4µm. From the discussion above the conclusion can be drawn that the cometary surface
on meter scales has a reasonable lower limit of the tensile strength of the order of 1kPa whereas the
probable upper limit can be taken as 100 kPa.

Next, we discuss approaches to Verification and Validation (V&V ) of regolith modeling and simulation.
Verification of simulation models is necessary to make sure the correct equations modeling the physics are
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correctly implemented in software. Validation of the simulation model with experimental results is also
necessary to correctly capture the physics in simulation. While verification can be done at the software level,
validation with experiment, especially experiments in micro-gravity, tends to be very costly. Therefore, other
approaches for V&V of microgravity physics models need to be sought. Validation experiments that could
be conducted include: a) Photoelastic method, where stress chains are viewed in cross-polarizers;2 b) Pink
plastic beads, where the contact between polystyrene ball and pink translucent plastic sheet is observed;17

c) Wet beads, where water between glass beads provides cohesive forces; d) Vertical emplacement tests us-
ing penetrator shot by gun; e) Vertical soil bearing capacity tests using regolith simulant; and f) Neutral
density beads floating in water, coated with vaseline or silicon oil. Known issues with Soil Mechanics Exper-
iments are that reproducible preparation of homogeneous soil sample is notoriously difficult. Furthermore,
characterization of soil in depth is difficult, since static parameters are measured at surface.Under 1-g load,
according to soil theory, the compressive strength in depth is significantly influenced by overburden terms:
effective strength/resistance increase with depth.

Now that the foundations of the regolith behavior have been laid out, in the next section we delve into
the analysis of the soil interaction process during penetration.

IV. Modeling of Forces acting on Penetrating Object

A complete and general solution describing the penetration of an anchor or projectile into a solid body is
not known, though there are several published models available which may be applicable to the anchor (see,
e.g., those listed by Wang35). For current modeling efforts we consider the anchor to be a rigid, conically
tipped cylindrical projectile, where θ is the half opening angle of the cone.3 Several possible forces may
contribute to the overall deceleration experienced by the projectile during penetration.1 These may depend
on penetrated depth and velocity as well as target material parameters. Most of the forces can be expressed
as the integral of decelerating stresses over the wetted surface Sw of the penetrator in contact with the target
material. The main force terms of clear (or plausible) physical origin found in the published literature are
as follows:

• A constant term associated with compressive strength, possibly including a contribution from the
targets self-weight. The latter should be negligible on the comet, where the surface gravity g is
expected to be no more than about 1/2000 of that on Earth. It may be more significant for ground-
based experiments where the projectile is fired downwards into a cohesion-less target, though the fact
that it is also proportional to the diameter of the projectile means that the term is still quite small for
laboratory-scale experiments.

• A term which increases linearly with depth due to the weight per unit volume ρg of the overlying
material (overburden pressure). As with the self-weight, this should be negligible on the small body
but needs to be considered for ground-based experiments, especially those with cohesion-less targets.
This term is also proportional to a factor Nq(φ). For the limit φ = 0, Nq = 1 and the term becomes
analogous to buoyancy in a fluid.

• A dynamic drag term proportional to the target density ρ and the square of velocity V , resulting from
the transfer of momentum from the projectile to the target material. In many cases the importance of
drag is incorporated by adopting a drag coefficient CD (which may itself have a velocity dependence),
analogous to the parameter used in fluid dynamics.

• Sliding friction between the projectile surface and the target material, governed by the coefficient of
sliding friction µf and the total normal stress from the three terms above.

• A viscosity or damping term, proportional to the component of velocity parallel to the projectiles
surface. As with friction, this force acts parallel to the anchors surface rather than normal to it. The
physical validity of this term seems to be a matter for debate.

• The weight of the projectile. This is only important when significant compared to the other (deceler-
ating forces.

Collecting these terms together with the appropriate geometric factors, one obtains the following equation
for the overall deceleration:

6 of 19

American Institute of Aeronautics and Astronautics



−dV
dt

=
1
m

∫ ∫
Sw

[(
1
2
CDρV

2 sin2 θ
′
+ σ + ρgNqz)× (sin θ

′
+ µf cos θ

′
) + kvV cos2 θ

′
]dA− g (2)

In this equation, θ
′

= θ along the conical tip, but θ
′

= 0 along the cylindrical shaht of the penetrating
object. Also, from Komle,14 Nq(φ) = exp(π tanφ) tan2(π4 + φ

2 ), and kv is a constact with units of [Nsm−3],
i.e., those of viscosity divided by the thickness of a representative boundary layer around the projectile where
viscous flow occurs..

From,14 a parameter analogous to a drag coefficient can be defined in terms of the material parameters
as

CD =
2

(1− η) cos2 θ
× [

(1− η) + 1/α+ η/(2− α)
ηα/2

− 1
α
− 1

2− α
] (3)

where α = 3λ/(3 + 2λ), λ = tan(φ), φ is the angle of internal friction, η = 1− ρ0
ρ is the volumetric strain,

ρ0 is the bulk density of the target material before penetration. The case η = 0 implies zero compression.
After,14 the compressive stress and the drag term can be combined together, so that the radial pressure

exerted on an area element of the target material in contact with an area element of the penetrators surface
can be written as:

σ = [η−α/2 − 1]
τ0
λ

+ [
(1− η) + 1/α+ η/(2− α)

ηα/2
− 1
α
− 1

2− α
]
ρ0V

2 tan2 θ

(1− η)
(4)

where τ0 is the soil cohesion. Note that σ consists of a constant term and a term proportional to the
square of velocity, i.e. this model produces neither a term analogous to viscosity nor an overburden pressure
term.

The total decelerating force acting on the penetrator consists then of two components. One is the vertical
component of the normal stress on the penetrators conical surface, the second being the vertical component of
the sliding friction acting tangentially to the projectiles surface. Combining these two components and inte-
grating over the whole wetted surface Sw of the penetrator gives the following expression for the deceleration
of the anchor:

−dV
dt

=
1
m

∫ ∫
Sw

[(
1
2
CDρV

2 sin2 θ
′
+ σ + ρgNqz)× (sin θ

′
+ µf cos θ

′
) + kvV cos2 θ

′
]dA− g (5)

A. Point mass analysis

To get insight into the sensitivity of the system to the various parameters involved, we derived a simple
one-dimensional model of the system behavior during penetration. Assumptions used in the derivation of
this reduced model are the following. The anchor is modeled as a point-like body with variable mass and
area. The mass of body increases because of soil compaction. The soil properties are constant. The gravity
level is constant. The soil penetration is modeled following the previous section. The system equations
are integrated with a 4-th order constant step Runge-Kutta integrator. Under these assumptions, the final
equations of motion of the penetrating anchor become:

v = ḣ (6)

v̇ = g − Aσc
M
− ρACDv

2

2M
(7)

ṁ = ρAv (8)

M = m0 +m(t) (9)

σc = sccNc + ρg(
1
2
sgANg + sqNqh) (10)

where ρ is the soil density, g is the local gravity level, m0 is the initial mass of the anchor, σc is the
maximum soil compressive stress, Nc, Ng, Nq are soil bearing capacity factors, sc, sg, sq are shape factors
which depend on the penetrator cross-section shape, and c is the cohesion coefficient.

Figure 3(a) depicts the soil bearing stress factors used in the soil constitutive equation, and figure 3(b)
shows the soil bearing stress vs. depth as a function of the soil friction coefficient. As expected, the
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penetration is less when the friction coefficient is high. Figure 4 depicts the soil bearing stress vs. depth as
a function of (a) friction angle, and (b) gravity level. In these cases, the lower cohesion and lower gravity
level would be representative of penetration into a powdery soil, while the higher cohesion levels represent
the case of a more compact soil. Figure 5 depicts the soil bearing stress vs. depth as a function of (a)
penetrator diameter , and (b) soil density. Figure 5 depicts the soil bearing stress vs. depth as a function of
(a) penetrator mass , and (b) cone angle. The last two figures confirm the fact that a larger diameter anchor
would penetrate less, and that a heavier anchor would penetrate deeper. All these results assume an initial
approach velocity of 1 m/s.

(a) (b)

Figure 3. (a) Soil bearing stress factors, (b) Soil bearing stress vs. depth as a function of friction.

(a) (b)

Figure 4. Soil bearing stress vs. depth as a function of (a) cohesion, and (b) gravity level.

Now that we have insight into the system behavior with a simple model, we increase the fidelity of the
model and consider the soil interaction process with a multibody dynamics model. This is done in the next
section.

V. Equations of Motion of Multibody Anchoring System

The deployment and retrieval of the end-effector, anchoring, or in-situ sampling device is carried out by
means of a multi-link or continuous manipulator. Different sampling arm types that have been considered
inclide: a) a rigid, multi-link articulated arm with joint control; b) a flexible deployable, coilable boom
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(a) (b)

Figure 5. Soil bearing stress vs. depth as a function of (a) penetrator diameter , and (b) soil density.

(a) (b)

Figure 6. Soil bearing stress vs. depth as a function of (a) penetrator mass , and (b) cone angle.

with locking joints; c) a deployable truss with joint control; and d) a continuum boom with distributed
control. Figure 7 shows the components included in the system level multibody dynamics analysis model of
spacecraft, manipulator, and small body.

The simulation of multiple rigid bodies at an extreme scale becomes an increasingly parallelizable problem
difficult to run on todays sequential processors in a meaningful amount of time. Until recently,? the high
cost of parallel computing limited the analysis of such large systems to a small number of research groups.
This is rapidly changing, owing in large part to general-purpose computing on the graphics processing
unit, or GPU (GP-GPU). GP-GPU computing has been very vigorously promoted by NVIDIA since the
release of the CUDA development platform,21 an application interface for software development targeted
to run all NVIDIA GPUs. A large number of scientific applications have been developed using CUDA,
most of them dealing with problems that are quite easily parallelizable such as molecular dynamics or signal
processing. Very few GP-GPU projects are concerned though with the dynamics of multibody systems,
the two most significant being the Havok13 and the NVIDIA PhysX25 engines. Both are commercial and
proprietary libraries used in the video-game industry and their algorithmic details are not public. Typically,
these physics engines trade precision for efficiency as the priority is in speed rather than accuracy. In this
context, the goal of our effort was to somewhat de-emphasize the efficiency attribute and instead implement
an open source, general-purpose physics-based GPU solver for multibody dynamics backed by convergence
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Figure 7. Multibody Dynamics Model of Contact Event.

results that guarantee the accuracy of the numerical solution. Unlike the so-called penalty or regularization
methods, where the frictional interaction can be represented by a collection of stiff springs combined with
damping elements that act at the interface of the two bodies, the approach embraced here draws on time-
stepping procedures producing weak solutions of the differential variational inequality (DVI) problem, which
describes the time evolution of rigid bodies with impact, contact, friction, and bilateral constraints. Recent
approaches based on time-stepping schemes have included both acceleration-force linear complementarity
problem (LCP) approaches22 and velocity-impulse, LCP-based time-stepping methods.30–32 The LCPs,
obtained as a result of the introduction of inequalities accounting for non-penetration conditions in time-
stepping schemes, coupled with a polyhedral approximation of the friction cone, must be solved at each time
step in order to determine the system state configuration as well as the Lagrange multipliers representing the
reaction forces. If the simulation entails a large number of contacts and rigid bodies, as is the case for granular
materials, the computational burden of classical LCP solvers can become significant. Indeed, a well-known
class of numerical methods for LCPs based on simplex methods, also known as direct or pivoting methods,9

may exhibit exponential worst-case complexity. Moreover, the three-dimensional Coulomb friction case leads
to a nonlinear complementarity problem (NCP). The use of a polyhedral approximation to transform the
NCP into an LCP introduces unwanted anisotropy in friction cones and significantly augments the size of
the numerical problem. In order to circumvent the limitations imposed by the use of classical LCP solvers
and the limited accuracy associated with polyhedral approximations of the friction cone, a parallel fixed-
point iteration method with projection on a convex set has been developed.5 The method is based on a
time-stepping formulation that solves at every step a cone-constrained quadratic optimization problem. The
time-stepping scheme has been proved to converge in a measure differential inclusion sense to the solution of
the original continuous-time DVI. Using this method a GPU based simulation capability was implemented
in the open source Physics Engine: Chrono::Engine,33.4

The state of a mechanical system with nb rigid bodies in three dimensional space can be represented
by the generalized positions q = [r1

T , ε1
T , . . . , rnb

T , εnb
T ]T ∈ R7nb and their time derivatives q̇, where ri is

the absolute position of the center of mass of the i − th body and the quaternion εi expresses its rotation.
One can also introduce the generalized velocities v = [r1

T , ω1
T , . . . , rnb

T , ωnb
T ]T ∈ R7nb , directly related

to q̇ by means of the linear mapping q̇ = L(q)v that transforms each angular velocity (expressed in the
local coordinates of the body) into the corresponding quaternion derivative ε̇i by means of the linear algebra
formula ε̇i = 1

2G(εi)ωi, with12

G(εi) =

 +ε1 +ε0 −ε3 +ε2
+ε2 +ε3 +ε0 −ε1
+ε3 −ε2 +ε1 +ε0

 (11)
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Mechanical constraints, such as revolute or prismatic joints, can exist between the parts: they translate
into algebraic equations that constrain the relative position of pairs of bodies. Assuming a set of constraints
is present in the system, for all i ∈ B they lead to the scalar equations Ψi(q, t) = 0. To ensure that
constraints are not violated in terms of velocities, one must also satisfy the first derivative of the constraint
equations, that is ∇Ψi

Tv + ∂Ψi

∂t = 0 with the Jacobian matrix ∇qΦi = [∂Ψi/∂q]T and ∂ΦiT = ∇qΨi
TL(q).

Note that the term ∂Ψi

∂t is zero for all scleronomic constraints, but it might be nonzero for constraints that
impose some trajectory or motion law, such as in case of motors and actuators. If contacts between rigid
bodies must be taken into consideration, colliding shapes must be defined for each body, and a collision
detection algorithm must be used to provide a set of pairs of contact points for bodies whose shapes are
near enough, so that a set A of inequalities can be used to concisely express the non-penetration condition
between the volumes of the shapes, i.e. for all i ∈ A, Φ(q) ≥ 0. Note that for curved convex shapes, such
as spheres and ellipsoids, there is a unique pair of contact points, that is the pair of closest points on their
surfaces, but in case of faceted or non-convex shapes there might be multiple pairs of contact points, whose
definition is not always trivial and whose set may be discontinuous. The model of the inter-body contact
and friction forces is discussed in the next section.

VI. Model of inter-body contact and friction

As shown in Figure 8, given two bodies in contact A,B, let ni be the normal at the contact pointing
toward the exterior of body A , and let ui and wi be two vectors in the contact plane such that ni,ui,wi ∈ R3

are mutually orthogonal vectors: when a contact i is active, that is for Φ(q) = 0, the frictional contact force
act on the system by means of multipliers γ̂i,n ≥ 0, γ̂i,u, and γ̂i,w, that is the normal component of the
contact force acting on body B is Fi,N = γ̂i,nni and the tangential component is Fi,T = γ̂i,uui + γ̂i,wwi (for
body B these forces have the opposite sign).

Figure 8. Modeling of contact between two bodies

Also, according to the Coulomb friction model, in case of nonzero relative tangential speed vi,T the
direction of the tangential contact force is aligned with vi,T and it is proportional to the normal force as
‖ Fi,T ‖= µi,d ‖ Fi,N ‖ by means of the dynamic friction coefficient µi,d ∈ R+. However, in case of null
tangential speed, the strength of the tangential force is limited by the inequality ‖ Fi,T ‖≤ µi,s ‖ Fi,N ‖
using a static friction coefficient µi,s ∈ R+., and its direction is one of the infinite tangents to the surface.
In our model we assume that µi,s and µi,dhave the same value that we will write µi for simplicity, so the
above mentioned Coulomb model can be stated succinctly as follows:

γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0 (12)

The first condition states that the friction force is always within the friction cone, i.e.

µiγ̂i,n ≥
√
γ̂2
i,u + γ̂2

i,w (13)
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The second condition states that the friction force and the velocity between two contacting bodies are
collinear and of opposite direction, i.e.:

〈Fi,T,vi,T〉 = − ‖ Fi,T ‖‖ vi,T ‖ (14)

The third condition, which captures the stick-slip transition, is:

‖ vi,T ‖ (µiγ̂i,n −
√
γ̂2

i,u + γ̂2
i,w) (15)

Note that the condition γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0 can be also written as a complementarity
constraint: γ̂i,n ≥ 0, Φi(q) ≥ 0, see (Stewart and Trinkle32). This model can also be interpreted as
the Karush-Kuhn-Tucker first order conditions of an equivalent maximum dissipation principle (Moreau19),
which can be written as:

i ∈ A : γ̂i,n ≥ 0,⊥Φi(q) ≥ 0, , (γ̂i,u, γ̂i,w) argmin
µiγ̂i,n≥

√
γ̂2
i,u+γ̂2

i,w

vT(γ̂i,uDi,u + γ̂i,wDi,w)) (16)

Finally, we must also consider the effect of external forces with the vector of generalized forces f(t,q,v) ∈
R6nb , that might contain gyroscopic terms, gravitational effects, forces exerted by springs or dampers, torques
applied by motors, and so on. Considering the effects of both the set A of frictional contacts and the set B of
bilateral constraints, the system cannot be reduced neither to an ordinary differential equation (ODE) of the
type v̇ = f(t,q,v) nor to a differential-algebraic equation (DAE), because of the inequalities and because
of the complementarity constraints, that rather turn the system into a differential inclusion of the type
v̇ ∈ F(t,q,v) , where F is a set-valued multifunction (Pfeiffer, Foerg et al.?). In fact, the time evolution of
the dynamical system is governed by the following differential variational inequality (DVI):

q̇ = L(q)v
Mv̇ = f(t,q,v) +

∑
i∈B γ̂i,n∇Ψi +

∑
i∈A(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w))

i ∈ B : Ψi(q, t) = 0
i ∈ A : γ̂i,n ≥ 0,⊥Φi(q) ≥ 0, , (γ̂i,u, γ̂i,w) argmin

µiγ̂i,n≥
√
γ̂2
i,u+γ̂2

i,w

vT(γ̂i,uDi,u + γ̂i,wDi,w))

(17)

Here, to express the contact forces in generalized coordinates, we used the tangent space generators
Di = [Di,n,Diu,Di,w] ∈ R6nb×3 that are sparse and are defined given a pair of contacting bodies A and B
as:

Di
T =

[
0 . . . −Ai,pT +Ai,pTAA˜̄si,A 0 . . .

0 . . . +Ai,pT −Ai,pTAB˜̄si,B 0 . . .

]
(18)

where we use Ai,p = [ui,vi,wi] as the R3×3 matrix of the local coordinates of the i-th contact, and intro-
duce the vectors s̄i,A and s̄i,B to represent the positions of the contact points expressed in body coordinates.
A superscript tilde denotes a skew-symmetric operator. The DVI in (2) can be solved by time-stepping
methods: in detail, the discretization requires the solution of a complementarity problem at each time step,
and it has been demonstrated that it converges to the solution to the original differential inclusion for h→ 0
(Stewart and Trinkle;32 Stewart31). Moreover, the differential inclusion can be solved in terms of vector
measures: forces can be impulsive and velocities can have discontinuities, thus supporting also the case of
impacts and giving a weak solution to otherwise unsolvable situations like in the Painlev paradox (Stewart30).

In addition to the contact and friction forces, short range cohesion forces also play a role, and this is
discussed in the next section.

A. Modeling of Short Range Interaction Forces

In low gravity environments, gravitational forces become less prevalent in comparison to cohesive and elec-
trostatic forces. Figure 9,28 shows that as the gravitational force decreases, the radius at which the attractive
forces between particles of lunar regolith become equivalent to gravitational forces increases as gravity de-
creases. In order to simulate the effects of short range forces, the simulation capability was augmented with
support for an additional contact based force system. Unlike frictional forces, which act at the surface of
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an object, interaction forces such as cohesion can apply within a certain boundary around an object. This
interaction distance acts as the cutoff for the force. When there is contact between the two boundaries, a
force is applied to both objects, when they separate the force becomes zero. Short range interaction forces
are modeled using a fixed boundary/envelope around each collision geometry. Figure 10 shows envelopes
around a sphere and a box. An additional collision detection phase is performed using the envelopes rather
than the actual collision geometry. This collision detection phase yields a list of intersections that are then
processed in parallel; each contact gets an associated force. It is possible for objects to have multiple forces
from multiple envelope intersections. A reduction step is performed to compute the resultant force and apply
it to each object. For Lunar Regolith, cohesion operates on separation distances of (10)( − 10) meters, this
distance relates to the surface cleanliness of the regolith.23 Surface cleanliness,S = 1.5(10)( − 10)/t, where t
is the separation distance, is a measure of how close particles can get to each other. For example on earth,
due to water molecules and gases in the atmosphere, the surface cleanliness is close to 0.1, on the side of the
Moon facing the Sun, however, the surface cleanliness is close to unity. Because the amount of molecules
and gases that are deposited on the free surface of the regolith is small, the van der Waals force between
regolith particles is large. This force is given by Fc = AS2R

48Ω2 and can be simplified to Fc = 3.6 × 10−2S2R
[9], where A is the Hamaker coefficient (4.3× 10−20[J ]), S is the surface cleanliness parameter, in the range
[0.1, 1], Ω = 1.5× 10−10[m], and R is the reduced radius R = r1r2

r1+r2
.

Figure 9. Assuming Lunar Regolith, this table shows the radius at which weight and cohesion forces become
equivalent, along with parent body sizes.

Figure 10. Bounding Boxes for short range interaction force conputation and collision detection

Next, the settling behavior is investigated.

B. Settling Behavior

In order to capture short range interaction forces properly, it is important that the granular material not
interpenetrate. There are several ways to reduce the amount of interpenetration: Reduce time step, increase
the number of the linear complementarity problem (LCP) iterations, and increase the responsiveness of
each LCP iteration. To better understand the behavior of the parallel LCP solver a parametric study was
performed using these three parameters.

The parameters in Figure 11 were used to run 180 different simulations consisting of a long slender box
in which 10 spheres were dropped. The width of the box was slightly larger than the width of the sphere,
keeping the spheres stacked on top of each other. Each simulation was run for 5 seconds and the kinetic
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energy was measured for the entire system. If the rate at which the kinetic energy decreases is higher, the
system reaches a state of rest faster with less interpenetration. When the energy is low but hasnt reached
zero, it means that objects are still moving and slowly sinking into one another. Figure 12(a) shows the
results for a simulation with 100 LCP iterations and a .1 scaling factor. When comparing to Figure 12(b),
which is 1000 iterations with a .1 scaling factor, the rate at which the kinetic energy decreases to zero is
much greater. It is possible to converge to a stable configuration faster with less iterations if the LCP scaling
factor is higher, see Figure 12(b), where the scaling factor is 0.8. However, this causes the solver to become
unstable when large penetrations do occur as it corrects for them faster, causing large changes in velocity.
When velocities become too large, problems with tunneling (objects passing through one another) can occur,
further destabilizing the simulation.

Figure 11. Parameters used in Cone Complementarity study to capture interaction forces properly

(a)

(b)

Figure 12. (a) Simulation with a LCP scaling factor of 0.1 and 100 LCP iterations, (b) Simulation with a LCP
scaling factor of 0.1 and 1000 LCP iterations.

VII. Simulation Results

In this section, we discuss the results of numerical experiments done on representative systems (Brazil
Nut, Ball Drop) and the final anchoring penetration simulation.
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A. Brazil Nut Test

A simulation of the Brazil nut experiment,15 was completed based on parameters from.? Figure 13 show
several snapshots of a GPU-driven multibody dynamics simulation of the Brazil nut segregation problem,
which was conducted to verify the granular media physics modeling engine. If granular material of two
different sizes and densities is placed in the same container and the container is excited with a specific
sinusoidal motion, the two materials can be separated with great control. This segregation process is used
widely in manufacturing and is a heavily documented phenomenon. Macro level effects have been confirmed;
see Figure 13, where the white sphere moves upwards due to the vibration of the container at 30 Hz.

Figure 13. Snapshots of Brazil Nut experiment

B. Ball Drop Experiment

This experiment involves a bed of granular material and a relatively large heavy ball (or impactor) falling
into that material.10 The acceleration profiles of the ball are measured as it is dropped onto the granular
material. To simulate the ball drop test, an initial set of test data was created. 250,000 equally sized
particles were dropped into a box and allowed to come to a stable state of compaction. This set of data was
saved and is reused for each parametric test where the impactor parameters are varied. For tests where the
particle parameters are varied, different initial data sets were created. For every combination of impactor
and particle type, the position, acceleration, and velocity profiles of the impactor were saved. These profiles
were used to make comparisons against experimental data provided in.10 Currently, particles with a radius
of .0035 meters have been simulated for each impactor. Results showed, when compared to literature, that
the acceleration caused by the impact was too great and the depth of impactor penetration was too low.
The next step is to determine the cause of the inconsistency. Parameters such as the friction coefficient of
the walls or the surface of the impactor could be contributing factors to the differences seen.

C. Anchoring Experiments

Unlike the previous experiment, where the motion of the anchor was controlled at the velocity level, in this
experiment the motion of the anchor was constrained and forces were applied to move the anchor. Four
parameters were modified for this experiment resulting in 10 separate tests. The angle of the anchor, torque
applied to the anchor, penetration force, and pullout force of the anchor varied. A listing of these parameters
can be seen in Figure 14.

A simulation setup similar to the previous experiment was used, with a few differences. First, the
container enclosing the particles was rectangular rather than square to accommodate anchors at shallow
angles. Second, the number of particles was greater than before, 32000 rather than 20000, and finally the
time step used for this simulation was .0002 [s] rather than .0005[s] resulting in a more accurate simulation.
The anchor was pushed into the granular material for two seconds, with the torque being gradually applied
once it was in contact with the granular material at 0.1 [s]. Then the anchor was allowed to rest for one
second after which it was pulled up for one second. This resulted in a 4 second simulation.

Using the initial test data created for the parametric ball drop test, helical anchors penetrate and anchor
into a bed of granular material. Currently, the simulation uses an anchor with a mass of 1 kg which is
inserted with a vertical force of 10 N and an axial torque of 10 N-m. Once the anchor penetrates and
digs into the material, it is pulled out with a force of 20 N-m. The purpose of this experiment is to set the
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Figure 14. Parameters of Helical Anchor experiment

underlying framework required to test anchors penetrating at different angles, masses, velocities and torques.
The force/torque required to remove the anchor from the granular material is measured to determine the
effect of different granular materials on the performance of the anchor.

Initially a triangular mesh was to be used for the anchor geometry. This method did not perform well due
to the number and size of the triangles in the mesh, which increased the total number of contacts. Therefore,
a different approach that involves using geometric primitives was explored. In this approach the anchor is
modeled using boxes, cylinders, and spheres. Using primitives rather than a triangulated mesh allows the
anchor to be parameterized easily.

A simulation of a helical anchor, penetrating a bed of granular material can be seen in Figure 15. In
this simulation, an initial bed of granular material was simulated until the kinetic energy of the system was
almost zero. Once this bed was created an anchor was dropped spinning at a constant rate of π radians
per second. After three seconds the anchor was pulled out of the bed at a constant velocity until it was
completely free.

Figure 15. Stages of anchoring, first anchor drops onto granular bed (a), then an applied torque anchors the
anchor (b,c), after which it is pulled out (d).

Figure 16 summarizes the results of the simulations. In Figure 16(a) an anchor with different applied
torques and a constant pullout force of 300N is simulated, while in Figure 16(b) an anchor with different
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pullout forces and a constant torque of 1000N is simulated.
These figures show that if the penetration force is higher, the depth of penetration will be greater. The

amount of torque has a smaller effect on the depth that the anchor reaches. However if the torque is too high,
in this case 4 [N-m] the anchor begins to rotate too quickly causing cavitation within the granular material.
This instability causes the anchor to move erratically within the granular material, reducing the overall
effectiveness of the anchor. Based on the results of the increased penetration force, a higher penetration
force will allow for better anchoring. A real world example would be screwing a screw into a piece of wood:
if no pressure is applied the screw will not anchor into the wood as readily as it would when it is both pushed
and rotated. The penetration force has the largest effect in relation to how quickly the anchor penetrated the
granular material. Increasing the torque has a much smaller effect. As the penetration angle is reduced from
0 degrees, a vertical anchor, to 90 degrees, a horizontal anchor, the velocity and accelerations experienced
by the anchor become smaller. This is because the anchor gradually enters the granular material rather
than being forced. Using a shallow angle might be preferred to reduce the overall forces experienced by the
anchor. Also it should be noted that the 60 degree anchor anchored just as deep as anchors that were more
vertical so the penetration depth was not adversely affected. There is a critical force at which the anchor can
be pulled out of the granular material effectively. When the force is too low, in this case 10 [N], it essentially
negates gravity causing it to move upwards very slowly. With a force of 20 [N] the anchor is pulled out at
a faster rate. There are several improvements that can be made to the simulation experiment. First is that
the granular bed be deeper and the container longer. By making the bed deeper it would prevent the anchor
from touching the bottom of the container, which occurred in several of the simulations performed. Also
with a penetration angle of 60 degrees the anchor is likelier to touch one of the two sides of the container;
making the container longer would solve this. In relation to the pullout force several simulations became
unstable when the force was applied. This is due to the instantaneous upwards force that was applied; if the
force were to be gradually applied it would prevent instabilities and allow the anchor to be pulled out.

(a) (b)

Figure 16. (a) Anchor with different applied torques and a constant pullout force of 300N, (b) Anchor with
different pullout forces and a constant torque of 1000N.

VIII. Conclusions

In this paper, using an analytical approach to soil interaction and a simulation package capable of utilizing
massively parallel GPU hardware, several validation of anchor penetration experiments were performed.
Ultimately, the outcome of this effort would be an analysis of several different anchor designs, along with a
recommendation on which anchor is better suited to the task of anchoring. Simulating cohesion accurately is
an important step in capturing rigid body dynamics in a NEO low gravity environment. One of the largest
factors that control the accuracy of the cohesion model is the stability of the LCP solver and the speed
at which it converges to a solution. It is possible to control the convergence rate and interpenetration by
stiffening the entire system. Unfortunately, this has the adverse effect of decreasing the stability of the LCP
solver. It is possible to increase stiffness without decreasing the stability of the solver, by a combination of
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increasing the number of LCP iterations, increasing the LCP scaling factor and decreasing the time step.
The short range force model has also been considered in the simulation capability. Macro level validation
was carried out with the Brazil Nut and the Ball Drop simulations, where the behavior was observed to be
similar to what was expected. Further experiments would include measuring the overall contact force on
the anchor to determine how much resistance is applied by the granular media, changing the gravity and
anchoring into a bed of varying particle sizes and shapes. Once the cohesion model has been completed and
tested, zero gravity tests would then be performed.
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