
Multi-Mission Simulation and Visualization for Real-time
Telemetry Display, Playback and EDL Event Reconstruction

M.I. Pomerantz, C. Lim, S. Myint, G. Woodward, J. Balaram, C. Kuo
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

The Jet Propulsion Laboratory’s Entry, Descent and Landing (EDL) Reconstruction Task has developed
a software system that provides mission operations personnel and analysts with a real time telemetry-based
live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity,
physics-based simulation framework and modern game engine-derived 3D visualization system developed in
the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL
Telemetry Visualization (ETV) system has been used for a variety of projects including NASA’s Mars Science
Laboratory (MSL), NASA’S Low Density Supersonic Decelerator (LDSD) and JPL’s MoonRise Lunar
sample return proposal.

I. Introduction
he JPL EDL Reconstruction Task has developed a re-useable, multi-mission software system that combines
physics-based spacecraft and environmental simulation with real-time telemetry processing and interactive 3D

visualization to support a variety of NASA spacecraft mission projects and domains. Originally designed as a
flexible tool to help mission engineers reconstruct actual spacecraft events that occurred during a mission’s EDL
phase, ETV has shown to be a valuable asset during the pre-EDL trajectory planning effort as well as during the
operational EDL phase when configured to process and display spacecraft states, via acquired telemetry data, in
real-time.
 On landing day, the MSL1 mission used the ETV system to help operations engineers, mission personnel and the
public, better understand the state and health of the spacecraft during EDL by visualizing flight software states,
vehicle position, orientation, altitude, velocity and health information obtained from the mission real-time telemetry
stream, along with environmental information such as Sun, Earth, Mars orbiter positions. This spacecraft data
combined with accurate high resolution digital elevation maps of Mars and the Gale Crater landing site provided the
MSL engineers with a powerful and accurate visual representation of MSL’s EDL phase. The LDSD2 project is also
currently using ETV to visualize physics-based simulation results of their spacecraft for a variety of test flight
scenarios to help better understand predicted vehicle performance during EDL, which will eventually allow the
delivery of heavier payloads than currently possible to the Martian surface.

II. System Requirements, High-Level Software Design and Use Cases
We determined very early on that the key

system requirements would include system
accuracy, multi-mission re-usability, re-
configurability and reduced cost deployment
moving from mission to mission. In addition, the
system would need to run on standard
workstation-class or high-end laptop computer
systems with consumer-level or better graphics
cards. To maintain compatibility with legacy and
newer JPL simulation, engineering and analysis
tools, we chose C++, Python and Fedora Linux as
our development languages and operating system
platform.
 To help us achieve these requirement goals,
the core ETV system has been built upon the
ongoing and mature space vehicle software
simulation framework and 3D visualization
software developed in the JPL DARTS3 Lab. For

T

Figure 1. ETV Software Organization. The thin, mission
specific, ETV layer is built in Python and accesses
DSENDS and Dspace C++ API’s via SWIG-wrapped

h d fl b l

American Institute of Aeronautics and Astronautics

1

physics-based EDL simulation, the DSENDS4 framework provides an accurate and mission-proven basis for our
reconstruction capability and the Dspace5 3D visualization software gives us a high-performance, kinematically
accurate, interactive 3D visualization capability.
 Both DSENDS and Dspace are built on C++ core frameworks with SWIG6 wrapped Python7 front ends that
allowed us to maintain ETV’s thin mission-specific Python layers while maintaining system performance and
reducing development time and cost. In simple terms, both the DSENDS and Dspace APIs are fully available at run
time via Python scripts that control the operation of the system. In addition, because we run the system in a Python
main script with a Python command line, we can inspect system state information and/or make function calls into
the Python or SWIG-wrapped C++ layer.

 To achieve a true multi-mission capability, ETV has been designed to be completely data driven. Spacecraft
mechanical system characteristics, including mass, dimensions, center of gravity, location and type of articulated
full 6 DOF joints, components and physical shape, via CAD models, can be provided to the system as Python
dictionary items available to both DSENDS simulation and Dspace visualization. If desired, the system can import
and execute high-fidelity models for a variety of spacecraft sub-systems such as Attitude Control System (ACS),
Reaction Control System (RCS) and accurately modeled
CAHVOR7 imaging cameras models. Planetary
environmental data such as gravity and atmospheric
models accessed by DSENDS can be used to help mission
planners predict spacecraft landing zones, while other
environmental data, such as accurate sky/star maps, terrain
digital elevation maps and texture imagery, can be used
both for determining altitude above the planet’s surface
and for presenting accurate visualization to users when
presenting “plan” or “context” views of a large terrain area
or simulating spacecraft imaging camera views.
 Typical system use cases include mission planning and
proposal phase visualization and simulation of proposed
spacecraft flight paths, as well as actual flight hardware
and/or software in-the-loop. JPL’s MoonRise Lunar
sample return proposal included flight radar hardware in-
the-loop for Lunar Descent, while both Descent and Ascent mission phases were visualized using prescribed motion
spacecraft data. Simulation and real time telemetry-based mission operations support and display of EDL phase
mission data was performed for the MSL mission, and simulation and real-time telemetry-based flight experiment
support is currently under development for the LDSD project. Extended use cases include running in closed-loop
mode with flight hardware and/or flight software, with ETV providing spacecraft flight profile information,
simulated imaging or sensor data hardware. Accurate line-of-sight communications modeling is supported by the
underlying DSENDS simulation framework and is also supported by Dspace the visualization system.

III. System Deployment
When providing simulation and

visualization capabilities to analysts, a typical
desktop configuration (Linux-based
workstation) at the user’s work area is
sufficient. For example, the LDSD project
provides time-ordered simulated prescribed
motion spacecraft and state data can be
provided in file format and/or serialized via
Python pickling. Spacecraft data usually
includes position and velocity vectors and
orientation quaternions, but can also include
other ancillary information such as simulated
spacecraft health data, camera pointing
information, fuel remaining, thermal data,
vehicle states (chute deployment, etc.) or

Figure 3. ETV Supporting MSL Landing Night
Operations. ETV used real-time mission telemetry data to
display vehicle state and health to mission personnel and the
public.

Figure 2. ETV for MoonRise Lunar Sample
return proposal. ETV can visualize simulated
spacecraft-acquired imagery using actual camera
pointing and field of view information.

American Institute of Aeronautics and Astronautics

2

other simulated sensor acquired data. For actual project flight experiments, ETV would be deployed to the flight test
range and project engineers will capture live telemetry from the test vehicle. In addition to providing real-time
displays to the LDSD engineers, ETV would be configured to run vehicle trajectory simulations, in parallel with the
real time telemetry display, to provide predicted vehicle landing or splashdown locations based on the last known
vehicle flight parameters, if those predictions are desired by project personnel.
 For MSL, ETV provided testbed support during critical operational readiness tests (ORTs) by displaying the
spacecraft states in real time from the simulated telemetry generated by the MSL flight hardware/software testbed.
On landing night, real time telemetry-based visualization of the final few minutes of the EDL phase was performed
by reading the mission telemetry stream and processing the telemetry data that originated in the MSL spacecraft and
then relayed back to Earth through the Mars Odyssey orbiter and NASA’s Deep Space Network8 (DSN). Telemetry
data was ingested in channelized form that contained spacecraft states were processed by ETV for real time viewing.
Post-EDL, MSL engineers are using ETV to playback selected sets of predicted EDL trajectories to better
understand actual vehicle performance during those last seven minutes prior to landing. These post-EDL studies and
reconstruction will be used to tune and improve current EDL models and tools as well as guide the trajectory design
for future Mars or other planetary landings.

IV. High-Performance Visualization
 The front-end of ETV is built on top of JPL’s Dspace 3D visualization system. With the latest version built on
the Ogre3D9 open source game engine, Dspace supports high frame rate rendering of polygon-based spacecraft and
planetary terrain using consumer-level graphics cards and workstations. While core library and API features are

implemented in C++, users and
high-level control scripts have full
access to the API via auto-generated,
SWIG wrapped, Python bindings
and a Python prompt. When special
rendering is required, Dspace makes
full use of modern GPU
programmability via GLSL10 shaders
and Ogre3D’s material scripts. For
example, when depicting spacecraft
flight paths that transition from
orbital to atmospheric altitudes, we
developed a simple fragment shader
that blends between sky and star
map textures based on the altitude of
the Ogre3D viewing camera to better
depict sky color at all possible
altitudes. All of ETV’s past and
current supported projects requested
that real time telemetry updates be
displayed on screen in the form of

tabular data and a gauge filled dashboard. To support this, we’ve built a number of python scripts to auto-place,
update and color on screen tabular data at run-time and for MSL, we augmented the tabular data with a dashboard
that updated whenever telemetry data was received from the MSL spacecraft as shown in Fig. 3. For the LDSD
project, we also added 3D CAD ornaments, attached to the spacecraft’s reference frame, that depict compass
heading, line-of-sight to comm. station, velocity vector and spacecraft coordinate axes and because these ornamental
objects are known by the underlying DSENDS simulation, we can accurately update the ornament’s pointing and
orientation information at every visualization redraw.

Figure 4. ETV Supporting LDSD Flight Simulation. ETV receives
mission telemetrey data and displays vehicle state and health using
polygon-based 3D spacecraft and environment representations, as well
as run-time updated tabular data and ornamental CAD items such as
compass graphics, velocity and line-of-sight vectors.

American Institute of Aeronautics and Astronautics

3

A. Terrain Rendering and Very Large Texture Rendering For MSL

In support of MSL, we have combined the highest resolution Mars Orbiter Laser Altimiter11 (MOLA) data
available with a very high resolution area of Gale crater made up of multiple MRO HiRise12 digital elevation maps.
Our Mars context surface, basically everything that was not Gale crater was constructed from MOLA terrain data
and contained about 150,000 triangles. The
Gale crater terrain had a much higher resolution
and contained about 2.85 million triangles. To
color our simulated Mars appropriately, we first
applied a lower resolution 16K by 8K pixel
Mars context texture to the entire Martian
surface. To ensure that we did not run into any
OpenGL texture size limits on the variety of
graphics cards that we planned to support
during development and deployment, we
deliberately divided our full Mars terrain into
two halves and applied half of the total 16K by
8K to each terrain portion. This resulted in the
application of two 8K x 8K pixels textures
across our full Martian surface. For the Gale
crater landing area, we applied a high-
resolution 8K x 8K pixel texture over the crater
area. The Gale crater texture, and the portion of
the lower resolution Mars texture that
overlapped Gale crater were then blended
together at run-time in a GLSL fragment shader
program to make the transition between the
lower context texture and the higher Gale crater texture less apparent. This blending allowed us to display a Mars
surface with a more uniform texture color, with no degradation of rendering performance.

B. User Interface Elements and Display Configuration for MSL

 As shown in Fig. 3, the MSL mission requested an easy to read dashboard user interface element to help mission
operations engineers easily understand spacecraft states during the last 7 minutes of EDL. Working with EDL

engineers, it was determined that the five important
spacecraft states to watch during EDL were Spacecraft
Fuel Remaining, Velocity, Mach number, Acceleration
and Altitude. The dashboard elements were updated with
data derived from telemetry. Altitude, for example, was
computed based on a mission provided reference Mars
radius for the early part of EDL and for the terminal
phase, by using spacecraft’s radar return information
relative to a computed Mars surface frame. The actual
dial graphical elements are based on a custom Python
class that modifies state variables for the underlying
GTK13 widget.
 To help tell a complete story for MSL, ETV was
configured to display both a spacecraft chase view as
shown in Fig. 3, and a spacecraft trajectory view in a
second, simultaneous visualization viewport. Both views

displayed the current state of the MSL flight system based on flight software states received, in combination with
current spacecraft position and orientation data. The trajectory added to the chase view by displaying the spacecraft
trajectory line with flight software mode changes attached to the trajectory line at the location that the mode
changed. This helped MSL engineers better understand when and where important mode changes, such as parachute
or heat shield deployment occurred. To maintain a “hands-off” operation during landing night activities, ETV was
pre-programmed to present varying views and camera locations automatically at various times during the EDL

Figure 5. High-resolution Gale Crater Terrain Texture
blended With Lower Resolution Full Surface Mars Context
Texture. GLSL fragment shader seamlessly blends high and low
resolution Mars textures at run time.

Figure 6. MSL Trajectory View With Final
Landing Ellipse

American Institute of Aeronautics and Astronautics

4

phase. These auto view changes were tied to flight software mode
changes as those changes were received in the telemetry stream.
 MSL EDL engineers also requested a variety of other views of
the Gale Crater landing site that displayed MSL along with the
Odyssey and MRO orbiters at touchdown time and view of
Odyssey from MSL. Other views that ETV supported for MSL
included MRO looking at MSL and a view of Mars from along
the Earth vector. ETV can support any number of varying and
multiple viewports, by attaching viewport cameras to any of the
spacecraft or planetary body objects reference frames in the
simulation, resulting in a wide range of accurate views into the
simulation environment.

V. Multi-Mission Simulation and Support For Multiple
Frames of Reference

The ETV software was written entirely in Python using the DSENDS and the Dspace 3D Visualization System. The
DSENDS framework is based on The JPL DARTS Lab’s Dshell++ Multi-Mission Simulation Framework14. Our
ETV simulations are typically driven from time-tagged position, attitude and velocity data (no forces were applied to
the models) in file format or, in the case
of MSL, actual acquired spacecraft
telemetry. Dshell++ “body” objects are
used to model the relationship between
spacecraft and the primary planetary
body. Spacecraft bodies are connected to
this primary planet body by a full 6 DOF
(translation + rotation) hinge. Spacecraft
motion during a simulation is controlled
by prescribing spacecraft hinges and by
using the appropriate spacecraft position
and attitude data, relative to the primary
planetary body. For space mission
simulations that model cruise phase the
primary planetary body might be the
Sun, Earth or destination other planet
and for multi-spacecraft rendezvous
scenarios, spacecraft “A” may be
connected to a destination planetary
body, while spacecraft “B” is connected
to Spacecraft “A”. This parent-child
relationship is required for our
simulation bodies, as every hinge must
have a parent hinge. Note that this time-
tagged spacecraft motion data can be
applied to any spacecraft supported in a
given simulation, though spacecraft and
planetary body motion data can also be
provided via NAIF Spice15 kernels as
well. Typically all of our ETV
simulations combine time-tagged motion data with Spice kernel motion data and in the case of our MSL simulation,

Figure 8. Planet-Centered EME2000 (J2000) Reference Frame
for Mars.

Figure 7. View of Gale Crater, MSL,
Odyssey and MRO from orbit range. Sun
illumination is correct for EDL day on Mars.

American Institute of Aeronautics and Astronautics

5

motion for three Mars orbiters: MRO, Mars Odyssey16 and Mars Express17 were Spice kernel-based as were the
planetary bodies representing Mars, Earth, Sun and Star Field.

A. Coordinate Frames

Spacecraft position, velocity and attitude data are always supplied relative to a reference frame. Here are some of

the frames used for telemetry reconstruction:

1. Planet-Centered EME2000 (J2000) Frame. This is an inertial frame with origin at the center of the planet and
orientation aligned with the Earth Mean Equator and Equinox of Epoch J2000 inertial reference system18. This is a
right-handed Cartesian set of three orthogonal axes chosen as follows: The +Z-axis is normal to the Earth mean
equator at epoch J2000, +X-axis is parallel to the vernal equinox of the Earth mean orbit at J2000, and the +Y-axis
completes the right-handed system. The epoch J2000 is the Julian Ephemeris Date (JED) 2451545.0. Spacecraft
position, velocity and attitude telemetry data are given in the J2000 Frame.

2. Planet-Centered Planet-Fixed (PCI) Frame. This is an inertial (non-rotating) frame with origin at the center of
the planet. The +X-axis is defined to pass through the point on the equator defined at zero latitude and zero
longitude. The +Z-axis is through the North Pole. The Y-axis completes the right- handed axes system. The J2000
base time (epoch) is always specified by the mission we’re supporting and for that specific simulation data set. In
Dshell++, the spacecraft position, velocity and altitude are specified in the PCI frame.

3. Planet-Centered Rotating (PCR) Frame. This frame is the PCI Frame with an angular velocity equal to the
planetary rotational velocity. A PCR frame is used when simulation CAD ornaments such as surface landing frames,
spacecraft trajectory or ground track lines, representations of ground-based compass heading lines and physical

structures such as communication
towers or buildings need to be
placed on a planets rotating surface.
For MSL we attached CAD
ornaments for spacecraft trajectories
and surface frame coordinate axes to
the PCR frame and for LDSD, which
is an Earth-based simulation,
compass and communication
structure graphics.

4. Surface Fixed (SF) Frame.
This is an East-North-Up (ENU)
frame at the planet’s surface at or
near the landing site. The SF Frame
is attached to the PCR Frame so that
the SF Frame rotates with the planet.
For MSL, this frame is called the
“Mars Surface Frame” (MSF). The
+UP axis is the radial vector from
the center of the planet to the planet
surface. The +EAST axis is
constructed from the cross product
of the +Z-axis in the PCR frame and
the +UP-axis. The +NORTH axis is
the cross product between the +UP
and +EAST axes.

For the MSL mission, the acquired
telemetry spacecraft position data
switched from the J2000 frame to
the MSF frame near the end of the

EDL phase. Unfortunately, because the MSF frame was determined on-board the MSL spacecraft during the EDL
sequence and after the landing radar has been activated, and then only stored on-board and not transmitted via

Figure 9. Planet-Centered Planet-Fixed (PCI) Reference Frame for
Mars.

American Institute of Aeronautics and Astronautics

6

telemetry back to Earth, the location and orientation of the MSF frame were not available to our live telemetry
playback visualization, so only an estimate of the location of the MSF frame could be derived. Because this type of
reconstruction capability fits nicely into the ETV charter, we were able to construct an estimated MSF frame by
comparing the last known J2000 spacecraft position with the first received MSF spacecraft position from telemetry.
Since the MSF frame location is constructed from the radial position of the spacecraft in the PCR frame, the error of
the MSF frame location depends on the time difference between the last known J2000 spacecraft position and actual

position of the spacecraft when MSF Frame was created. A post-landing
analysis using best available estimates, of the actual landing night MSF
frame location, showed that our computed MSF frame was off by about
2.5 km from the actual MSF frame location. On-going, reconstruction of
the spacecraft flight path during EDL is facilitated by combining
spacecraft telemetry with ground-truth actual descent or orbiter imagery
which allow for accurate registration of the spacecraft flight path with
the surface of Mars.

5. Spacecraft Body (SC) Frame. This frame is attached to the spacecraft
body and is typically defined by a mission, based on the mechanical
specifications of the spacecraft. In Dshell++, the SC Frame is attached to
the PCI Frame.

6. SPICE Frame. This frame is attached to astronomical bodies and

spacecraft defined by SPICE kernels. Orbits of spacecraft and planetary bodies obtained from Spice kernels are
defined in a SPICE frame.

B. Frame-to-Frame Transformation Operations

At each time step in our simulation, which from simulation to simulation could range from a time step resolution
of two seconds or lower for test data to 1000hz or higher for high-rate simulation data, Dshell++ provides C++
libraries, with Python interfaces, to create Frame objects and to transform vectors and quaternions from one frame to
another. Below is the procedure used to set a typical spacecraft’s position, velocity and attitude from simulation or
telemetry data:

1. Obtain spacecraft position, velocity and quaternion vectors in J2000 frame from mission data.
2. Use Dshell++ Frame library to convert the position, velocity and quaternion from J2000 frame to the PCI

frame.
3. Set the spacecraft body hinge translation vector to the position in the PCI frame.
4. Set the spacecraft body hinge rotation to the quaternion in the PCI frame.
5. Compute relative ground velocity by converting velocity from PCI frame to PCR frame. The relative

ground velocity is used to estimate the spacecraft’s Mach number with a zero wind velocity.

VI. System Testing for Correctness
Because ETV was scheduled for use by MSL as an operations tool we needed to test the ETV software for

reliability and correctness in multiple ways. First, we fuzz tested to test for the stability of the software. We used the
comma separated value (CSV) formatted data input mode of the software for this. This mode of operation is a
testing-only mode that simulates telemetry data input. To do the fuzz testing, we mutated existing CSV data files
that we captured from a variety MSL mission tests. Mutation involved re-ordering data rows and adding noise to
numeric data and flipping of Boolean value data elements. In a scripted loop, we mutated data and fed it into the
software to make sure that we exercised the software fully.

We also performed regression testing on our software. Regression testing involved taking software in a known
good state and having it render images to disk. These images would be kept under revision control to make sure that
any changes we made in the future would not introduce regressions in the form of visual changes. In the JPL
DARTS Lab, we use a continuous integration server. We used this continuous integration server to automatically
test our ETV software and all underlying software libraries on a regular basis.

Figure 10. Example MSL
Descent Stage Body Frame. MSL
spacecraft body frame as supplied
by the MSL mission.

American Institute of Aeronautics and Astronautics

7

 To make sure that bad code was never merged into the main development branch, we made use of our
configuration management software's pre-save hook capability. Whenever a developer tries to release the code into
the main development branch, the hook would check that the developer ran the developed regression tests and that
all tests passed without error. Since we were developing mostly Python code, we used the Pylint19 static analysis
tool for Python. It would find things such as undefined variables, unused variables, and bad indentation (which is
important in Python).
 In addition to automated testing, we also did extensive manual testing and while a bit tedious, this was the only
way to exercise the variety of pathways in the code when users performed a variety mouse operations or keyboard
hotkey presses which, for example, triggered a variety of different visual capabilities in the code such as
enabling/disabling auto view changes or toggling on/off the MSL landing ellipse. Because we had the help of three
interns spending the summer at JPL, we were able to perform many hundreds of manual runs in a relatively short
period of time prior to the final MSL readiness tests and of course landing night. For this manual testing, we
constructed a spreadsheet-based testing form with questions that the interns and ETV staff members answered
regarding system operations at a minimum of ten different and random points during each simulation run. Interns
and staff ran our ETV software against each of close to thirty MSL testbed simulation files, checking for
correctness. Among other things, they checked the numerical output, displayed as tabular text data on the ETV
viewports, against the dashboard gauges to ensure the correctness of the ETV visuals. Because we had about thirty
stored MSL test cases, each manual test resulted in approximately seventy data points per run. 3D viewport visuals
were also checked during these test runs to ensure that the ETV viewports displayed spacecraft position and
orientation as expected, as well as flight system changes such as chute deploy and powered descent mode. As
expected, multiple bugs were found by staff and interns, which we quickly fixed.
 Finally, and prior to final system deployment, we stress tested the software by running it in a continuous loop.
This basically confirmed that no memory leaks or similar bugs existed in the code. We performed this loop test
while running on a variety of our development workstations, as well as on the actual deployment machine that we
planned to use on landing night.

VII. MSL Telemetry Processing Module
The MSL Telemetry Processing Module (MSLTelem) is the interface between the MSL EDL spacecraft

telemetry and ETV. MSLTelem is written entirely in Python and directly interfaces with the Python mission specific
code layer as shown in Fig. 1.

Fig. 11 shows the data flow and interfaces within MSLTelem to the simulation and MSL EDL telemetry.
Regardless of where the telemetry originates from; e.g. a test data file, near real-time playback or a live telemetry
feed, the processing is the same.
MSLTelem will execute a script that
queries the mission’s channelized
spacecraft telemetry data stream for
specific EDL data products.
MSLTelem processes and maps the
data to the required ETV interface
inputs that are used to advance the
simulation and update the spacecraft
state and health information.

MSLTelem is modeled as a finite
state machine (FSM) using the FSM
Class Module that is part of the
DSENDS Simulation Framework. This
ensures predictable execution paths
with the FSM’s defined list of known
states, actions and triggering
conditions (or events) for state
transitions. Essentially after
initialization, MSLTelem will enter
into a polling state waiting for
telemetry data that will be processed
and sent to ETV.

Figure 11. MSL Telemetry Processing Module Data Flow and
Interfaces.

American Institute of Aeronautics and Astronautics

8

A. Interfaces
1. MSL EDL Telemetry

The functional requirements for the MSL Telemetry Processing module were developed in collaboration with
MSL EDL engineers and documented in an Interface Control Document (ICD). The ICD specifies the EDL real-
time data products (RTDP) and variables for spacecraft timestamps, position, velocity, orientation, ground altitude
along with their channel IDs, reference frames and valid state ranges. Additional information is documented for
spacecraft clock offset, key event timeline, spacecraft states, expected data gaps, data rates, old interleaved data, fuel
health data, data priorities and flight rules.

The highest data priority is the state data, followed by the Mars Surface Frame (MSF) data and then the J2000
entry navigation data. This means that there could be cases where the only data MSLTelem receives would be the
state data or state data with possibly some portion of the J2000 entry navigation data or MSF data. Note that real
time telemetry product rates range from 0.5hz to 4hz and any telemetry data product whose time tag is older than the
current received spacecraft clock time and is also outside of the bounds set by that products data rate, is assumed to
be older, interleaved, spacecraft recorded data and is ignored.

2. EDL Simulation/Visualization (ETV)

 The ETV interface used by MSLTelem consists of three generic and one mission specific interface functions
(Fig. 11). The Advance Sim function is used to advance the simulation in time and update the spacecraft’s position,
orientation and velocity in the simulation and visualization. The Update State function reflects the transitions in the
spacecraft’s event states (e.g. heading alignment, parachute deployment, heat shield separation, Mars Surface Frame,
backshell separation, rover deployment, etc.) and the onscreen tabular event state list is visualized to show the
current state and past received states. The Update Health function, specific to our MSL simulation, sends values
representing the amount of fuel used by the MSL spacecraft to the onscreen fuel remaining gauge.

The fourth interface was an additional functionality added to ETV for MSL to support a transition of reference
frames from J2000 to MSF navigation. The MSL spacecraft calculates the MSF on-board, however that MSF
information is not contained in the telemetry stream, therefore ETV generates its own predicted MSF. The Create
MSF interface function was added to support the creation of this simulated MSF frame. MSLTelem provides ETV
with the spacecraft position and orientation information from the latest J2000 reference frame along with the first
valid spacecraft position and orientation in MSF. ETV can then reconstruct an MSF at this reference frame
transition. Additionally there are two off-nominal cases that can affect the creation of the MSF. In the off-nominal
case where no J2000 positional data is available MSLTelem still requests ETV to generate an MSF. However,
without the J2000 data, ETV has to make certain assumptions that result in the creation of a simulated MSF that
resides in the center of the landing ellipse. In the second off-nominal case where in addition to no J2000 positional
data items there are also no J2000 timestamps. In this case MSLTelem isn’t able to determine valid time stamped
groupings of the MSF positional data, therefore no MSF can be created. So for this second off-nominal case, the
ETV onscreen display would not get any spacecraft positional updates but would still likely be receiving the updated
state data which is the highest priority data. Note that additional details on MSF are described in the Section V.

B. Testing

 As shown in Fig. 11, MSLTelem runs in three modes that designate if the telemetry is from a test data file, live
telemetry stream or near real-time playback. MSLTelem feeds the data through the same Python sub-process pipe
mechanism regardless of its origin so essentially telemetry data source is independent from the actual processing.

The MSL test data files were collected during testbed tests and were used to support ETV system development
unit tests, system integration and stress testing. The data files also provided a means to generate other test
conditions such as data gaps and interleaved data, as well as being massaged for stress testing. More information is
provided on the system regression and stress testing in Section VI.

Live testing was performed with the MSL testbed data whenever the MSL EDL engineers ran an EDL test or
whenever there was a flight software regression test or a second chance test might result in nominal or off-nominal
spacecraft performance. Live testing also provided the capability for MSL EDL to use a channel simulator that
generated a telemetry stream with data gaps or entire dropouts of J2000 or MSF data.

American Institute of Aeronautics and Astronautics

9

The capability of a near real-time playback of previous testbed telemetry data using the MSL Channel Down tool
allowed simulated live testing when live testbed testing wasn’t available, as well as being able to repeat live testing
with near real-time feed.

Additionally, during some tests the runtime output was logged in case there was a need for post-test analysis of
ETV’s behavior. For example, this output data was used to help understand the data gaps in telemetry and how the
simulation was handling those data gaps. Initially, when data gaps were encountered the visualization trajectory
trails showed a step-wise jump when there was a gap as opposed to an expected straight-line segment. Data plots
from the logs clearly illustrated the data gaps and revealed that the simulation needed to make an adjustment in how
the spacecraft simulation body was rotated along with the Mars surface in order to handle these data gaps properly.

Verification of system correctness as it related to the simulated spacecraft’s final landing location was done by
visual comparison with MSL predicted simulation runs and reviewed by the MSL ETV and MSL EDL engineers.
Additionally, for a subset of MSL testbed runs, we inspected ETV’s final reported spacecraft landing locations and
compared against MSL EDL engineer-provided spacecraft positions with respect to the MSL Landing Target Frame
(LTF).

Testing helped define ETV operational processes that were eventually included into the MSL EDL operational
timelines for ORTs and Landing night. These checks included such items as whether the simulation epoch required
updating due to spacecraft clock drift; updates to the landing ellipse size and location; telemetry data flow pipeline
check-out queries; and confirmation of the runtime telemetry channel query parameters by MSL EDL engineers
Additionally, a separate channel query process was set up to collect telemetry data to be added to ETV’s collection
of test data sets.

VIII. Conclusion
The JPL developed EDL Telemetry Visualization system (ETV) has been developed as a multi-mission tool to

support a wide range of NASA space mission simulations, vehicle and model performance reconstructions and
interactive visualizations via playback of mission predicted, simulated spacecraft state information as well as from
actual spacecraft telemetry and mission acquired imagery. Accurate representation of the modeled flight system or
systems, including any number of spacecraft with full 6 DOF joints, multiple reference frames and environmental
data such as planetary gravity, atmosphere, lighting and terrain are supported. A powerful high fidelity, physics-
based simulation framework forms the basis of the ETV system and can perform a wide range of predictive
computation for spacecraft vehicle performance and trajectory through the use of built in or third-party provided
spacecraft sub-system computer models.
 The design and development of the ETV software leveraged existing, mature, and widely used JPL simulation
tools and frameworks. This means that we only need to build thin, mission specific code layers that access the thick
layer of existing multi-mission features and capabilities of the simulation and visualization frameworks. Because
these existing tools have been fully verified and validated for accuracy and come with an extensive regression test
suite, we can easily maintain the accuracy and correctness of our deployed ETV systems as we move from project to
project.
 Future work considerations for simulation, visualization and telemetry processing will include the development
of a generic multi-mission telemetry module that will be completely driven by standardized data and command
dictionaries which fully define the data products, data rates, and flight rules such as knowing which data products
are valid during various portions of a mission simulation, data or reference frame conversions, possible spacecraft
clock offsets, and the handling of interleaved time-ordered data. In addition, full setup and runtime operation of the
3D visualization, including layout of onscreen text data, dashboard gauges and camera viewpoint transitions could
be driven using a standardized specification. We will also continue to work with MSL, LDSD and future missions to
further enhance our suite of simulation and reconstruction tools.

American Institute of Aeronautics and Astronautics

10

Acknowledgments
This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract

with the National Aeronautics and Space Administration.
We would like to thank our sponsors, Brian Muirhead, JPL Chief Engineer, Bharat Chudasama, JPL Office of

the Chief Engineer, and the Mars Science Laboratory Mission management and staff at JPL. Adam Stelzner, Allen
Chen, Steve Sell, Brian Schratz and all of the JPL MSL EDL team. Mark Adler, Mark Ivanov and the JPL staff of
the LDSD project. The JPL DARTS Lab team and the JPL Mobility and Robotics Systems Section staff. Kevin
Hussey, Paul Upchurch and the staff of JPL Visualization and Technology Applications and Development group.
The JPL MoonRise proposal staff. JPL DARTS Lab summer interns Matt Dughi, Jeff Linahan and Grace Tilton, for
their most excellent ETV test support. The Jet Propulsion Laboratory for support in the development of the EDL
Telemetry Visualization Task and MSL for a successful landing.

References
1NASA’s Mars Science Laboratory. http://mars.jpl.nasa.gov/msl/
2NASA’s Low Density Supersonic Decelerator. http://www.nasa.gov/mission_pages/tdm/ldsd/index.html
2Dynamics and Real Time Simulation Lab. http://dartslab
3J. Balaram, R. Austin, P. Banerjee, T. Bentley, D. Henriquez, B. Martin, E. McMahon, G. Sohl, "DSENDS - A High-Fidelity

Dynamics and Spacecraft Simulator for Entry, Descent and Surface Landing", IEEE 2002 Aerospace Conf., Big Sky, Montana,
March 9-16, 2002.

4M. Pomerantz, A. Jain, S. Myint, "Dspace: Real-time Visualization System for Spacecraft Dynamics Simulation", Third
IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT 2009), Pasadena, CA, July
19-23, 2009.

5Simplified Wrapper and Interface Generator. http://www.swig.org/
6Python Programming Language. http://www.python.org/
7R Madison, M Pomerantz, and A Jain, "Camera Response Modeling and Verification in ROAMS," i-SAIRAS 2005, Munich,

Germany, September 2005.
8Nasa’s Deep Space Network. http://deepspace.jpl.nasa.gov/dsn/
9Ogre Open Source 3D Game Engine. http://www.ogre3d.org/
10OpenGL Shading Language. http://www.opengl.org/documentation/glsl/
11 Mars Orbiter Laser Altimiter. http://mola.gsfc.nasa.gov/
12High Resolution Imaging Science Experiment. http://hirise.lpl.arizona.edu/
13GTK. http://www.gtk.org/
14C. Lim, A. Jain, "Dshell++: A Component Based, Reusable Space System Simulation Framework", Third IEEE

International Conference on Space Mission Challenges for Information Technology (SMC-IT 2009), Pasadena, CA, July 19-23,
2009.

15NASA's Navigation and Ancillary Information Facility. http://naif.jpl.nasa.gov/naif/
16NASA’s Mars Odyssey. http://mars.jpl.nasa.gov/odyssey/
17NASA’s Mars Express. http://www.esa.int/esaMI/Mars_Express/index.html
18P.D. Burkhart, “MSL Update to Mars Coordinate Frame Definitions”, JPL IOM 343B_2006_004, August 15, 2006.
19Pylint, Python Code Static Checker. http://pypi.python.org/pypi/pylint/

American Institute of Aeronautics and Astronautics

11

http://dartslab/
http://www.swig.org/
http://www.python.org/
http://deepspace.jpl.nasa.gov/dsn/
http://www.ogre3d.org/
http://mola.gsfc.nasa.gov/
http://hirise.lpl.arizona.edu/
http://naif.jpl.nasa.gov/naif/
http://www.esa.int/esaMI/Mars_Express/index.html
http://pypi.python.org/pypi/pylint/

American Institute of Aeronautics and Astronautics

12

	Multi-Mission Simulation and Visualization for Real-time Telemetry Display, Playback and EDL Event Reconstruction
	I. Introduction
	II. System Requirements, High-Level Software Design and Use Cases
	III. System Deployment
	IV. High-Performance Visualization
	A. Terrain Rendering and Very Large Texture Rendering For MSL
	B. User Interface Elements and Display Configuration for MSL

	V. Multi-Mission Simulation and Support For Multiple Frames of Reference
	A. Coordinate Frames

	VI. System Testing for Correctness
	VII. MSL Telemetry Processing Module
	A. Interfaces
	1. MSL EDL Telemetry
	2. EDL Simulation/Visualization (ETV)

	B. Testing

	VIII. Conclusion
	Acknowledgments
	References

