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It is not a simple computational fluid dynamics problem ...
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.. We need to represent radiation, clouds, turbulence, convection, gravity
waves, surface interaction.
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1) Small-scale fluid dynamics:

= Turbulence and Convection (dry and moist)

= Gravity waves

* (louds (phase transition / latent heat)

= Would be mostly solved if NWP models had resolutions of around 1-10m

2) Small-scale physical processes (NOT just fluid dynamics):
» Radiation Interaction
» Cloud and aerosol microphysics

= Some of these equations are well-known but others not at all

3) Surface interaction can be (1) and (2) but also includes additional
complexity (vegetation, biogeochemistry)
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Example of radiation vs furbulence/convection

Turbulence and convection parameterization:
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needs fo be parameterized
due to non-linearity w®

Radiation parameterization:

This is incomplete
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Complex non-linearities
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Stochastic approach

But models have C, I R
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Non-linearities in cloud-radiation interaction, cloud
microphysics are too complex -> need stochastic approaches
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We need to sample (Monte Carlo) these PDFs

Kawai & Teixeira, JCLI, 2010
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¢ High-resolutions (~ 10-50m) in all 3 dimensions

* Resolutions good enough to represent key dynamics in convection
* Closures still needed for scales < 10m (but simpler to do)
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Matheou et al.,, MWR, 2011
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Representing moist convection with stochastic plumes
leads to more realistic results

(x1073 m)
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LES provides detailed statistics about cloud structure
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Mass Flux Model for Cumulus Mixing

free
atmosphere
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Originally proposed by Arakawa
1969, Betts 1973 LCL
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subcloud layer
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o, is the udraft/core area fraction -
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Lateral entrainment rate: ¢ =

‘/WuT hc

Constant t: Neggers et al O1;
Cheinet and Teixeira, 03.

Constant h: Siebesma 97

not to be confused with cloud fraction
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—— Flux (EDMF) Parameterization
Bimodal joint pdf of wand qt

Large Eddy Simulation (LES) model 15
- BOMEX shallow cumulus case 3

w (m/fs)

Well mixed sub-cloud layer:
Eddy-Diffusivity (ED) mixing

Cloud core updrafts:
Mass-Flux (MF) transport
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Stochastic Plume EDMF:
using PDF of updraft properties

v Suselj et al., JAS, 2012

1) Estimate PDF of plume/updraft properties (T, q, w)
2) Sample PDF to generate a variety of plumes (diff. properties)

3) Integrate different plumes in the vertical

Produces more realistic results than purely deterministic parameterization
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For parameterizations:

Ensemble and deterministic prediction are essentially different

In ensemble prediction systems:

= Parameterizations should be viewed as stochastic

= But within the context of current parameterizations
(without imposing artificial stochastic terms)

Parameterizations:
= Typically used to predict the evolution of grid-mean quantities
= Can also provide estimates of higher moments

(can be used to constrain random sampling)
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Methodology for stochastic parameterizations

A variable after being updated by a parameterization (e.g. moist convection) can be written:

¢Stoch . + £

conyv cony

conv - mean value of the variable after convection
;;;ih - stochastic value after convection
E - normally distributed stochastic variable with
mean ,u(s) =0
standard deviation 0'(8) —Vo}

@.conv

O 4 cony standard deviation due to moist convective processes

After discretizing the first term on the rhs, the following equation is obtained

gt =g L) e
[

conv

¢ - mean value before the moist convection parameterization

Teixeira & Reynolds, MWR, 2008
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Assumlng standard deviation proportional to convection tendency leads to:

) Ag
o))

[ - constant of proportionality
1] - normally distributed stochastic variable with mean y(n) =0
and standard deviation 0(77) =1

(Teixeira & Reynolds, MWR, 2008)

Simple vertical correlation: single random number per column

No horizontal or temporal correlations:

= Simpler

= Perturbations assumed much smaller than grid-size

= Variance already possesses a certain degree of correlation
= Physically unclear how to construct correlations
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» Perturbations grow in time (Teixeira & Reynolds, MWR, 2008)
= At 24 h: mostly in Tropics/Sub-tropics

= At 144 h: mostly in Mid-latitudes

= Similar for U at 250 and 850 hPa, Z at 500 hPa
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NOGAPS stochastic convection after 5 to 10 days:
= Saturation in Tropics

= Synoptic (sub-synoptic) peak in NH Extra-tropics

Stochastic Convection:
« Is able to produce substantial ensemble spread in the Tropics
« Produces sizeable impact in ensemble spread in the extratropics

Initial-condition + stochastic convection show promising increase in
ensemble spread and decrease in number of outliers in the Tropics
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Stochastic Convection significantly improves NOGAPS ET performance
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24 48 72 96 120
358 293 235 183 133 Number of Forecasts

NOGAPS ET with stochastic convection better than high-res deterministic
model, and competitive with official forecast at 96 and 120 hours
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Sub-grid scale physical processes possess complex non-linearities

Some parameterizations need to be stochastic (e.g. radiation-cloud
interaction, cloud microphysics) EVEN in deterministic models

Moist convection parameterizations using plumes (mass-flux) are more
realistic if stochastic

Simple stochastic convection parameterizations produce improvements
in hurricane forecasts with NOGAPS ensemble system

Stochastic physics and resolution independent parameterizations





