Concurrent Engineering at the JPL Innovation Foundry

Brent Sherwood
Manager,
Solar System Mission Formulation
Jet Propulsion Laboratory, California Institute of Technology

October, 2012
SECESA, Lisbon

Concurrent Engineering evolves to meet evolving needs

- JPL is a primary NASA resource for helping the science community ideate, mature, and propose concepts for new missions
- Environmental context for the formulation lifecycle evolves continuously
- JPL continuously “system engineers” requirements and solutions for providing formulation support and winning new missions
- The JPL Innovation Foundry is an integrated formulation lifecycle enterprise
NASA science mission community faces a ratcheting challenge

Simultaneous, competitive formulation…

…of a large number

…of deeply engineered concepts

…for ambitious science objectives

…achieved using well-understood subsystems

…formulated on a strict diet
What All PIs and SDTs Need

• Darwinian evolution of a seed idea
 – Maturation into a toughened concept baseline
 – That can win, fly, and deliver

• Accurate forecasting despite incomplete data
 – Of the eventual state of truth regarding cost and risk
 – Of how others will model that state of truth when evaluating the concept
Every mission starts with a spark

Science

Mission Architecture

Technology

Engineering

A question

An invention

A mission concept
...then the concept is developed

or

One man’s concept is another’s doodle...
26 Elements of a Mission Concept

<table>
<thead>
<tr>
<th>Technical</th>
<th>Programmatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Science Objectives & Requirements</td>
<td>• Acquisition and Surveillance</td>
</tr>
<tr>
<td>• Mission Development</td>
<td>• Project Organization</td>
</tr>
<tr>
<td>• Spacecraft/Instrument System Design</td>
<td>• Schedules & Margins</td>
</tr>
<tr>
<td>• Ground System Design</td>
<td>• Cost Estimation & Risks</td>
</tr>
<tr>
<td>• Technical Risk</td>
<td>• Project Scope</td>
</tr>
<tr>
<td>• Technology</td>
<td>• Documentation</td>
</tr>
<tr>
<td>• Inheritance</td>
<td>• NEPA Compliance</td>
</tr>
<tr>
<td>• Master Equipment Lists</td>
<td>• Subsystem Make-Buy</td>
</tr>
<tr>
<td>• Technical Margins</td>
<td>• Work Breakdown Structure</td>
</tr>
<tr>
<td>• Trade Studies</td>
<td>• Testbeds, Models & Spares</td>
</tr>
<tr>
<td>• Modeling & Simulation</td>
<td>• Export Compliance</td>
</tr>
<tr>
<td>• Launch Services</td>
<td>• Mission Assurance Management</td>
</tr>
<tr>
<td>• Planetary Protection</td>
<td></td>
</tr>
<tr>
<td>• Verification & Validation</td>
<td></td>
</tr>
</tbody>
</table>
Concept Maturity Level (CML) Benchmarks *Before* NASA Gates

- **Cocktail Napkin**: Initial Feasibility
- **Trade Space**: Point Design
- **Baseline Concept**: Integrated Concept
- **Preliminary Implementation Baseline**: Integrated Baseline

JPL Innovation Foundry
Team X pioneered CE for CML 4

- Architectures
- Space Missions
- Flight Systems
- Instruments
Team X: Widely Emulated

• 1072 studies since creation in 1995
 Peak rate was 93 studies per year (2004)

• Drivers going forward

 Increasing concept diversity challenges design-model applicability

 Increasing need for customized, direct-use products (white papers, proposal sections, NRC reports)
Evolving Ideas *Before* CML 4

Next-gen CE at JPL

- Open trade space
- Frame key questions
- Analyze drivers
- Derive and assess "partials"

Trade space understood

- Specify value framework
- Assess potential tradeoffs
- Prioritize promising directions

A few design options synthesized

Baseline validated, ready to be advocated

Collaborative Engineering Support

Focused Team

- Specify value framework
- Assess potential tradeoffs
- Prioritize promising directions

- Open trade space
- Frame key questions
- Analyze drivers
- Derive and assess "partials"

Fundamental feasibility of one approach validated quantitatively

Salient kernel documented

CML 1

CML 2

CML 3

CML 4

CML 5

= Idea

= Concept analysis “seed”

= Point design

= Funding gate

JPL Innovation Foundry
A-Team: New Type of CE for CML 1-3

<table>
<thead>
<tr>
<th>A-Team Type</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate Ideas</td>
<td>Produce and organize 10^2 ideas from a single question or topic. Rank using figures of merit.</td>
</tr>
<tr>
<td>Assess Feasibility</td>
<td>Quantitative, tool-based examination of technical and programmatic feasibility</td>
</tr>
<tr>
<td>Explore Architecture Trade Space</td>
<td>Develop and use “concept analysis seeds” to expose gradients in the trade space</td>
</tr>
<tr>
<td>Science Traceability</td>
<td>Link science questions to goals, objectives, observables, measurements, and instruments</td>
</tr>
<tr>
<td>Technology Impact</td>
<td>Ideate potential applications, assess feasibility, quantify science-mission and architecture impacts</td>
</tr>
<tr>
<td>Strategic Opportunities</td>
<td>Quick-focus on one strategic question. Analyze potential ROI, develop forward plan.</td>
</tr>
</tbody>
</table>

In high demand: 39 studies in 1.5 years so far
A-Team allows study of high-leverage, open-ended ideas not ready for Team X

- Idea Generation
 - Mars Cave Dwelling
 - Small-Sats for Human Spaceflight

- Feasibility Assessment
 - Public Outreach for Insight
 - Planetary Science from Atmospheric Balloons

- Architecture Trade Space Exploration
 - Ultra High Energy Cosmic Ray Observatory
 - Low-Cost Landers

- Science Traceability
 - Sea Level Rise
 - Cube-Sats for Earth Science

- Technology Infusion
 - High Performance Space Computing
 - Mars Sample Return In-Space Propulsion

- Strategic
 - Follow-On Mission for EPOXI
 - Future Spacecraft and Science Missions