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ABSTRACT 
 

A bottom-up visual attention model (the saliency model) is tested to enhance the performance of 
Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) 
using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-
learning techniques [2]. In this project, saliency is used as a pre-processing step to reduce the space for performing 
OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known 
target features. Preliminary results are promising and future work entails a rigorous and parameter-based search to 
gain maximum insight about this method. 
 

1. Introduction 
 

Automatic target recognition (ATR) is a focal area in computer vision and artificial intelligence research 
with wide applications in surveillance, navigation, medical imaging, and other fields. ATR is inherently difficult due 
to the complexity and variety of targets found in data sets. JPL has developed a multi-stage ATR pipeline that can be 
trained for different types of inputs (Figure 1, top). The first stage uses an OT-MACH filter to detect regions-of-
interest (ROIs). In the next stage, features are extracted from these ROIs using principal component analysis (PCA). 
Finally, ROIs are classified as true- or false-positives by a trained machine-learning algorithm [3]. The aim of this 
summer project was to augment or replace the first stage of the ATR pipeline with a saliency model to detect 
preliminary ROIs (Figure 1, bottom). Two main datasets were used for testing: short range SONAR data, and visual 
data (Figure 2). Different saliency parameters were explored for the different datasets. 

 
 
Figure 1. Top: Classic Multi-stage ATR System. Images are filtered by OT-MACH to find preliminary ROIs, which 
are then passed onto feature extraction and classification for final target discrimination. Bottom: saliency-ATR 
System, replacing the first stage of ATR with the saliency algorithm. 



 
Figure 2. Samples of the types of input images used. Helicopter image (left) and SONAR image (right). 

 
2. Background 

 
This summer project was motivated by previous experience and work at the iLab at USC, advised by Dr. 

Laurent Itti. Much of iLab's work has been in the development of neurologically plausible visual models, one of 
which is the saliency model [1]. The saliency model effectively finds ROIs in natural scenes, and the main focus of 
this summer's work was to find out if saliency would be effective in the context of ATR. To be considered effective, 
saliency would have to perform as good as, or better than, the first stage of the ATR pipeline for finding ROIs. 
 

2.1 ATR System 
 

The ATR system developed at JPL breaks target recognition into three steps: preprocessing, feature 
extraction, and classification. This modular approach allows new methods to be tested independently without 
compromising the general ATR system requirements. For example, the preprocessing step can be any technique that 
produces ROIs before features are extracted from them. In the case of the general purpose ATR system, this 
preprocessing step is fulfilled by a trained OT-MACH filter (Figure 3). 

A target-matching filter is constructed using a wavelet function, and then correlated with the input image in 
the Fourier domain [2]. This produces sharp peaks in the input image where likely targets can be found. These peaks 
are the ROIs. This first stage of the pipeline determines the best performance of the entire ATR system. If a target is 
not detected in this stage, then it will never be detected [3]. Therefore, it is important for the first stage to find every 
single possible target, even at the expense of including many false-positives. The results of the first stage are the 
ROIs, which are then passed onto the feature extraction and classification stages. 
 
 
 
 
 

 
 
 
 
 

 
 
 

The feature extraction and classification stages are responsible for stripping out false-positives from the 
first stage of the ATR system (Figure 4). The feature extraction stage parameterizes each ROI as a feature vector for 

Figure 3: Examples of OT-MACH training set and filters on short range SONAR data. 
Training samples take account of different sizes and lighting conditions of targets. Left shows 
image samples of short-range data, middle shows training images, and right shows the 
produced filter in the spatial. [3] 



classification. It has two important functions: to provide features that the classifier can use to differentiate between 
true- and false-positives; and to reduce the dimensionality of the feature space. Without this second function, each 
feature would be as large as the number of pixels in the ROI, which would greatly increase the computational time 
of this stage. Instead, the ATR system uses principal component analysis to reduce the feature space, and also find 
the best representative features of each ROI. 
 

	
   	
  
Figure 4 

Finally, the classification stage takes each parameterized ROI feature vector and attempts to separate the 
true-positives from the false-positives. Any machine learning technique can be applied here, such as a back-
propagation neural network or a support vector machine. In the ATR system used by this project, the Adaboost 
algorithm is used [3]. No matter what method is used, prior training must be performed for the classification to be 
successful. 

 
2.2 Saliency Model 

 
The saliency algorithm simulates bottom-up visual attention in primate visual cortexes. An input image is 

provided, and an output "saliency map" is produced that indicates ROIs. These ROIs are determined to be the most 
salient parts of the image, which a primate observer would be most likely to direct its attention to. This algorithm is 
fast and effective at finding visually conspicuous areas of an image. The algorithm works by breaking the input 
image into several feature maps, performing transformations on those maps, and then recombining them into a final 
saliency map [1] (Figure 5). 
 

	
  
Figure 5: Saliency model [1] 

 



Feature maps are extracted from the input image in three modalities: color, intensity, and orientation. Each 
feature map is down-sampled and scaled multiple times to produce an image pyramid. Four color maps are produced 
to represent red, green, blue, and yellow. These are computed as follows:  R = r - (g + b)/2 for red, G = g - (r + b)/2 
for green, B = b - (r + g)/2 for blue, and Y = (r + g)/2 -|r -g|/2 –b for yellow. Intensity is computed as the average of 
the red, green, and blue channels. Orientation is computed from the intensity map using Gabor filtering. Across 
scales, a center-surround operation is performed, which uses surrounding information to inhibit feature responses. 
This simulates the behavior of neurons in the visual cortex, and is well suited to responding to locations that stand 
out from their surroundings [1]. The center-surround operation is implemented as cross-scale differences within the 
feature map image pyramids. 

The resulting feature maps are combined at a specific pyramid level (the “output level”) into a saliency 
map, which encodes information about salient regions of the input image. Depending on the application, these 
feature maps can be recombined in a weighted manner. These weights, along with the output level of the final 
saliency map, and the scale differences in the center-surround operation, encompass the parameters that saliency 
exposes for fine-tuning. 
 

	
  
Figure 6: Example of saliency output (right) on short-range SONAR data (left). There is a strong peak where the 

target is, producing a very nice ROI for later ATR stages. 

 
3. Objectives and Approach 

 
The goals of this summer project were two-fold: to research new methods for ATR, and to increase the run-

time performance of ATR. Along those lines, saliency was investigated as a way to accomplish both of these tasks. 
If saliency could be demonstrated to match or beat the OT-MACH filter's performance at finding ROIs, then it 
would also simultaneously increase the run-time performance of ATR since the saliency algorithm is 
computationally efficient. To test saliency's efficacy on the datasets, an implementation would be required that could 
allow for rapid testing with the existing ATR codebase. Therefore the development of a saliency-based ATR system 
would entail several steps: 
 
• Test saliency on images from the ATR dataset for feasibility 
• Port an existing implementation to Matlab and export relevant parameters as Matlab arguments 
• Tune parameters per dataset 
• Replace or augment the first ATR stage with a tuned-saliency model 
 

Testing of saliency on our datasets showed promise for the algorithm, so work was begun to port the 
existing C implementation to Matlab. This involved restructuring the saliency model implementation into a so-called 
Mex-function that can be compiled into a shared object that Matlab can use. Once this was completed, the saliency 
model was fitted into the ATR system. Preliminary results demonstrated that saliency would need more fine-grained 



tuning per dataset before it could be considered useful for ATR, due to the sensitivity of output maps to input 
parameter choices (Figure 8). 
 

4. Results 
 

The saliency model parameters tuned for this application were weights for the color, intensity, and 
orientation channels; the output resolution; and the center-surround step sizes (Figure 7). The channel weights had 
the most negative effect, producing the best results when scaled almost all the way down. The output resolution 
parameter provided a tradeoff between noisy data, and low granularity. That is, the lower the output resolution, the 
less noisy the saliency map, but also the less detailed it could be. Thus for almost all cases, a mid- to high- output 
resolution was most effective. The center-surround step sizes effectively controlled the size of salient targets found, 
and how much they tended to stand out from their surroundings. These parameters were the most sensitive to input 
data, and required the most thorough tuning. 

Due to the size of the parameter space, an automatic, unsupervised parameter-tuning algorithm is called for. 
This requires an appropriate scoring metric. The metric chosen was a ratio between the number of high peaks in the 
known target regions to the number of high peaks outside of the target regions. The optimal parameter set would 
maximize this ratio, producing very high peaks inside the target regions, and very low peaks elsewhere. This scoring 
metric proved to be robust for both datasets used in this summer project. 
 

	
  
Figure 7: Parameter tuning interface showing good parameter selections for helicopter data. 

	
  
Figure 8: Comparison of good (bottom left) vs. bad (bottom right) saliency parameters on helicopter data (top). 
Helicopter appears in circled area in top image. Parameters used in good output shown in Figure 7. 



5. Discussion 
 

The results of this work support the intuition that saliency produces good results on datasets that are most 
like natural scenes. With well-tuned parameters and a good dataset, saliency outperforms OT-MACH. However, 
saliency's drawbacks prevent it from being a simple drop-in replacement for OT-MACH. These drawbacks include 
extensive parameter tuning per dataset, and preprocessing required on datasets where the targets are 
indistinguishable from background noise. These setup steps obviate one of the purposes of using saliency; namely, 
to avoid the filter-mv creation setup for OT-MACH. 

Saliency does show promise for continued application to ATR. Future work should focus on a fast 
parameter search strategy. Hill climbing is suggested as one good search strategy, but future work would entail a full 
implementation and comparison of different search strategies. Integration of saliency feature map information into 
the feature extraction stage of ATR may also produce much better results. Combining these phases could improve 
the overall performance and execution time of ATR. 
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