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Abstract— This study examines the issues that should be 
considered when migrating legacy flight software 
implementations from a single processor to a multi-core 
environment. With the increasing availability of space 
qualified multicore processor single board computers, the 
flight software community must be prepared to utilize this 
new technology. Most existing flight software created at the 
Jet Propulsion Laboratory (JPL) is running on single core 
RAD750 processors with the Wind River vxWorks real-
time operating system. Projects including the Mars 
Exploration Rovers, Mars Science Lab, Aquarius and many 
others utilize this platform. As always, it is desirable to 
reuse as much of the existing software architecture and 
source code as possible. This holds true for migration to 
multicore as well. We initiated this study to explore the 
most significant software migration issues to consider and 
the potential for innovations that were previously not 
realizable with a single core processor. A potentially 
significant benefit of adopting a multi-core implementation 
is improved system reliability through multi-core fault 
recovery mechanisms. Several options are available for 
implementing improved fault tolerant software systems 
using multicore. These may include dedicated cores for 
fault monitoring, redundant instances of critical functions 
or combinations of these with associated recovery 
mechanisms. 
 
Multicore implementation of existing real-time sequential 
applications does not necessarily improve processing 
performance. An existing real-time application utilizing a 
single core processor architecture already executes “fast 
enough” with some amount of margin. A multicore 
implementation may increase the performance margin for 
real-time requirements of an application as well as reducing 
development cost associated with a “tight fit” and enabling 
more complex applications. This depends on how much of 
the application can be parallelized. According to Amdahl’s 
Law an 8-core processor will generally double the 
execution speed of an application that has a parallelizable 
portion of 50%. An application having a 95% 
parallelization may see a speed increase by a factor of six. 
However, it is possible that tightly coupled applications 
may not fully benefit from symmetric parallelization due to 
added communications overhead between cores. Wind 

River has recently marketed a new product called the 
Hypervisor, which enables multiple instances of one or 
multiple operating systems to run on assigned cores. This 
provides a virtualized asymmetric multiprocessing 
capability allowing existing software targeted at a single 
processor to be migrated into a multicore environment 
gradually while freeing the developer from explicitly 
managing cores. Several vendors will be releasing space 
qualified multicore single board computers within a couple 
of years, with development systems that are currently 
available and this should be taken into account in 
architecture and design today.  
 
In this paper we will discuss potential benefits and pitfalls 
when considering a migration from an existing single core 
code base to a multicore processor implementation. The 
results of this study present options that should be 
considered before migrating fault managers, device 
handlers and tasks with time-constrained requirements to a 
multicore flight software environment. Possible future 
multicore test bed demonstrations are also discussed. 
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1. INTRODUCTION 
The benefits of multicore implementation of space qualified 
processor platforms are expected to enable future space 
missions to incorporate far greater autonomy and fault 
recovery capabilities than current single core architectures. 
Spacecraft operations, instrument control and onboard 
image processing could all exist within one multicore 
platform, minimizing size, weight and power (SWaP) 
requirements. For this to occur, careful consideration must 
be given as to how these functions should be distributed 
among the available cores, how the memory, interrupts, I/O 
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resources and even multiple instances of the operating 
system are to be managed. 

It is desirable to utilize legacy flight software at JPL that is 
developed to run on a single core processor such as the 
BAE RAD750. Since the time critical components of the 
software have been proven to meet their performance 
requirements, these components should be able to meet 
these requirements with greater margin given a dedicated 
core and interfaces with equal or greater capabilities. But to 
take full advantage of what multicore can offer, we need to 
consider potential benefits of increased functionality by 
utilizing multiple cores, improved fault recovery 
mechanisms and integrated instrument flight software 
functions. 

Several space qualified multicore platforms will become 
commercially available in the near future. Prototype 
versions will be available even sooner. Planning a path for 
migration to multicore can begin by considering some key 
issues regarding architectural choices that are available. 

2. KEY CONSIDERATIONS FOR MULTICORE 
FLIGHT SOFTWARE MIGRATIONS  

When analyzing the feasibility of migrating legacy flight 
software to a multicore platform, several key issues should 
be considered. Does the legacy software architecture easily 
lend itself to a distributed processor implementation? 
Should software modules having time-critical performance 
requirements be allocated their own core or can they coexist 
with other modules? Does a single core have the capability 
to meet these performance requirements? What are the I/O 
bandwidth requirements for each of the assigned cores? 
Does the effort required for a multicore migration of this 
application warrant the advantages of its implementation? 
What parts of the system lend themselves to operating 
system or hypervisor allocation of resources and what parts 
may require their resources to be explicitly allocated (as in 
a dedicated core)? How can separation of software 
components increase system reliability and perhaps reduce 
development cost of less critical components?  This section 
addresses some of these concerns. 

Multicore Aware Operating Systems and Hypervisors 

A Symmetric Multiprocessing (SMP) operating system 
manages all processor cores by assigning tasks to available 
processor cores and moves tasks among the processors to 
provide load balancing. A software component having 
significant processing requirements may be written to take 
advantage of multiple cores by multithreading, but could 
require a substantial development effort to implement. 
Operating systems that support unsupervised Asymmetric 
Multiprocessing (AMP) enables the user to configure each 
core with it’s own operating system and functional software 

components. It is possible to distribute different operating 
systems among the cores. The user must also assign cores 
such that the required resources are provided. Functional 
software components of an existing software architecture 
need to be partitioned and assigned an affinity to a specific 
core. Time critical components will most likely require a 
dedicated partition, whereas multiple non-time-critical 
components may be assigned to a shared partition, while 
keeping in mind the resources available to the assigned 
core. An advantage of an unsupervised AMP 
implementation versus SMP is the legacy software 
components scale well with minimal modification.  

 

 

Figure 1 – Unsupervised AMP 

Supervised AMP provides dynamic core assignment of a 
partition containing an O/S and some number of functional 
components. As with unsupervised AMP, one partition is 
assigned per core. A hypervisor is a hardware virtualization 
manager that provides a virtual board (VB) interface. 
Virtual boards share one or more cores during execution. A 
hypervisor usually schedules virtual boards that run on a 
shared core based on priority assignment or round-robin. 
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Figure 2 – AMP with Hypervisor 

The developer may assign multiple components of a legacy 
flight software system to a partition. The O/S residing in 
the partition schedules the component within the partition. 
The supervised AMP implementation allows different types 
of operating systems to be dynamically assigned. 
Alternatively, running no O/S within a partition is possible 
(known as bare metal implementation). Therefore, as the 
supervisor assigns various functional components to a core 
during operation, it is possible various operating systems 
are being run on a core at any given time. 

Analyzing Legacy Software for Multicore Distribution 

Existing legacy flight software most likely consists of some 
number of functional components. These components 
should have well defined time-constraints. A component 
may execute one or more tasks at a specified priority. 
Application program interfaces (APIs) should also be well 
defined among the software components. The API should 
define all messages, events and memory specifications for 
the component. In addition, hardware interfaces required 
for use by the component should be defined. Given this 
information, a software designer can begin to consider how 
to most effectively distribute these components onto a 
multicore processor platform. 

The existing flight software architecture was developed to 
run on a single processor core and has proven to meet the 
project system requirements for which it was designed. 
Migrating the legacy code to multicore can improve the 
system performance margin and allow for additional system 
functionality and robustness. It is assumed here that the 
processor performance for each core in a given multicore 
device is at least equivalent to the legacy processor. For an 
unsupervised AMP implementation, the legacy software 
components can be separated into partitions that will each 
run on a dedicated core. As one would expect, the most 
time-critical components may need to be assigned 
individually to a dedicated core. Some external devices may 

be directly accessible to only one core or a subset of cores 
depending on the platform. Core assignment of the 
functional components should take this into consideration 
to avoid unnecessary data traffic between cores. Device 
driver components will be assigned to the core that will 
interface to the specific device. Devices that need to be 
shared among cores may require updates to the driver to 
provide multi-access capability. Alternatively, a device 
handler in the application may be developed to provide an 
API for shared access to the device. Ideally, components 
that require common device access will be assigned to a 
common core. 

Legacy fault monitoring mechanisms can be upgraded to 
take advantage of the capabilities of a multicore processor 
architecture. As an example, software components may be 
swapped between cores if a fault monitor determines a core 
or its interfaces are non-functional. On an unsupervised 
AMP multiprocessor system, the fault monitor may 
command a functional component to transfer to an alternate 
partition, where the active component on the failed core is 
deactivated and the corresponding component on an 
alternative core is activated. Other possible multicore fault 
recovery mechanisms are discussed later. 

Other than a possible fault recovery scheme as mentioned 
above, the component and O/S assignments remain static 
for most unsupervised AMP implementations. The effort 
required to migrate to an unsupervised multicore 
environment will depend on the coupling of resources and 
components in the legacy system. Careful consideration of 
partitioning the functional components will improve the 
probability of a successful migration. A hypervisor 
implementation can reduce the implementation effort 
because the legacy software components can be distributed 
to any number virtual board partitions. The dynamic virtual 
board environment can be configured for optimum 
performance and flexibility, minimizing legacy code 
modification effort. As with unsupervised AMP, time-
critical components should be assigned to a dedicated 
virtual board and core. Also, care should be taken to 
configure the hypervisor to map the components requiring 
devices to cores that provide an interface to the device. 
Some hypervisors provide options for device access among 
cores. A direct access option to a device provides native 
core performance. Shared access may be provided, but with 
some performance reductions. An example migration to a 
hypervisor based multicore system is shown in section 3. 

Interprocess Communication 

Migration of existing frameworks such as those for 
Interprocess Communication (IPC) to a multicore platform 
is needed. Fortunately multicore aware operating systems 
provide mechanisms that reduce the complexity of 
migrating some of these frameworks. Multi-OS 
Interprocess Communication (MIPC) and the Multicore 
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Communications API (MCAPI) provide an API that routes 
messages between cores and virtual machines. Once an 
existing framework is modified to utilize the mechanism 
provided by the O/S, reusable libraries can be generated for 
future project use.  

Interrupt and Device Handlers 

An interrupt source from a device or a discrete signaling 
event is handled by an interrupt service routine running on 
a core that is assigned to service the event.  Software 
components residing on a processor core that require access 
to device or external event that is serviced by another core 
may utilize IPC communication with the device or event 
handler if throughput response meets the performance 
requirements. In a virtualized hypervisor environment, 
multiple virtualized components may access shared devices. 
The hypervisor manages the scheduling of device access 
among multiple virtualized software components as shown 
in Figure 3.  

 

Figure 3 – Virtualized Device Access 

Fault Handling Considerations 

Fault monitoring mechanisms for legacy flight software can 
be enhanced to take advantage of multicore. As an 
example, the Mars Science Laboratory (MSL) implemented 
a fault recovery software component named Second Chance 
that executed on a second string processor during Mars 
entry, descent and landing (EDL). This component ran in 
parallel to the primary system and consisted of a subset of 
critical tasks to be performed in the case of primary 
processor reboot during EDL, which did not occur. This 
mechanism could possibly be modified to run on a 
dedicated core, in addition to alternate processor strings. If 
the O/S running a critical component such as EDL 
experiences a failure or reboot, a fault monitor could 
activate a Second Chance component on a dedicated 
reserved core. Another possibility is to activate the critical 
component itself on the reserved core if it is determined a 
hardware failure has occurred in the primary core. 

A fault monitor in a multicore processor system may be 
distributed among multiple cores. In an unsupervised AMP 
configuration, functional components are grouped along 

with an O/S and assigned a core on which to reside. Fault 
monitors can be included in the grouped components 
assigned to each core. System status is communicated 
among cores providing more robust fault monitoring. 
Critical system state can be monitored by multiple cores, 
where inconsistent state is determined by a voting scheme. 
A hypervisor implementation can reduce the effort needed 
to implement fault protection on multicore. Each software 
component can run on a virtual board partition. A fault on 
a virtual board partition can be contained and the virtual 
board restarted on an alternate core autonomously by the 
hypervisor.  

3. A FLIGHT SOFTWARE MIGRATION PATH  
It may be preferable to migrate an existing traditional flight 
software system to multicore using an incremental path 
approach. Initially some of the software service frameworks 
can be retooled for a multicore testbed environment. The 
representative flight software architecture can then be 
modified for multicore and perhaps additional fault 
monitoring functionality can be implemented. Initially the 
O/S or hypervisor can be used for resource allocation with 
minimal impact on an existing implementation. A 
partitioning of the legacy software into functional 
components that coexist on a virtual board will minimize 
the effort needed for a multicore migration. System 
performance can be monitored on the testbed as the 
configuration parameters for the hypervisor are modified 
for optimization.  
 

Application Partitioning Description and Modeling 

A Synthetic Aperture Radar (SAR) instrument controller 
provides an example of a real-time legacy software system 
that has been used on several projects at JPL. The software 
resides on a PowerPC based single board computer running 
the Wind River vxWorks operating system. The Radar 
Instrument Controller consists of nine functional modules, 
each executing one or more vxWorks tasks. An example of 
a possible multicore migration of the legacy flight software 
to a hypervisor based multicore system is shown in Figure 
4. An analysis of the existing functional components was 
performed based their known performance and interface 
requirements. It was determined that the components could 
be grouped into six partitions. Each partition resides on a 
hypervisor virtual board (VB). Since the hypervisor handles 
core scheduling, the legacy software components do not 
require modification other than some possible API updates 
for inter-process communication. The multicore 
architecture provides additional processing capability and 
therefore a new software component is added for onboard 
SAR processing (OBP). OBP does not require real-time 
response, therefore it may run on a non-real-time operating 
system, such as Linux. Some existing components of the 
example software system do not necessarily require real-
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time response and my also be migrated to a non-real-time 
O/S if desired.  

 

Figure 4 – A Hypervisor-based multicore migration. 

This migration example shows four cores allocated to the 
Radar Instrument Controller. Other available cores may be 
allocated to spacecraft specific functions or other 
instruments. The hypervisor is configured to allocate the 
virtual boards to the available cores as shown in Figure 4. 
The most time-critical software component resides on VB3 
and is assigned an affinity to Core 2. No other VB is 
allowed to run on this core during nominal operation. 
Components assigned to VB1 and VB2 are assigned an 
affinity for Core 1, VB4 is assigned to Core 3 and VB6 
assigned to Core 4. VB5 contains the OBP is allowed to run 
on both Core 3 and Core 4 as a SMP component. The 
hypervisor handles scheduling of the virtual boards among 
the cores. VB1 and VB2 implement prioritized scheduling 
for Core 1, VB4 and VB5 for Core 3, VB5 and VB6 for 
Core 4.  

External devices are assigned to device drivers directly 
residing on the cores shown in the figure. In the example, 
access to data residing on the Solid State Recorder (SSR) 
and Non-volatile Memory (NVM) is required by multiple 
components. The hypervisor is configured to share access to 
these devices. Some modification of the device driver may 
be required. An alternative implementation is to provide a 
device handler service at the application level to share 
device data among functional components, depending on 
the throughput limitations. 

The Radar Instrument Controller has a fault manager that 
monitors system state and telemetry. For this multicore 
migration, the fault manager is divided among 3 virtual 
boards. Fault monitoring functionality is distributed. As 
with the original single core implementation, each 
component periodically sends status to the fault monitor. If 
a component reports invalid status or fails to report any 

status, the fault handler may reconfigure virtual board 
assignments as deemed necessary. In Figure 5, Core 4 has 
failed. VB5 and VB6 are not responding. The fault 
detection mechanism instructs the hypervisor to assign VB5 
and VB6 to Core 3. Now three virtual boards are running 
on Core 3 in with prioritized scheduling. The device drivers 
for the SSR and NVM that were assigned to Core 4 are now 
assigned to Core 3. 

 

Figure 5 – Core failure fault recovery 

The ability to dynamically change virtual board core 
assignments will depend on the capability of the hypervisor. 
However, a fault recovery manager could have the 
capability to enable and disable functionality per virtual 
board if the hypervisor does not provide this functionality.  
 
Testbed Implementation 
A testbed platform containing a prototype multicore flight 
computer architecture provides an invaluable path for a 
project to gain confidence and experience in the ability to 
eventually utilize multicore in space based platforms. 
Several vendors currently provide or will soon provide 
radiation-hardened (>100 krad) versions of multicore single 
board computers for use in spacecraft platforms. These rad-
hard SBCs contain multicore Power-PC or X86 processor 
architectures with Rapid I/O, SpaceWire and other I/O 
options. Many of these vendors offer up to 8 processor 
cores. The boards also provide hardware assisted processor 
buffer management and device memory access 
management. Although some hypervisor implementations 
provide multicore buffer management in software when 
needed, a hardware implementation is preferable. Prototype 
versions of these boards are currently or soon will be 
available and can provide a test platform to migrate 
existing software components to a multicore environment.  
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4. CONCLUSIONS 
This paper has discussed many of the issues that should be 
considered when migrating legacy flight software to a 
multicore platform.  We presented an example path to 
migrate existing legacy software to multicore. Several 
commercially developed space qualified multicore 
platforms are currently or will soon be available. Migration 
of existing functional software components onto a prototype 
multicore processor platform will enable flight software to 
take advantage of multicore space platforms in the near 
future.  
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