
Multicore Considerations for Legacy
Flight Software Migration

Kenneth Vines
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA. 91109

kenneth.w.vines@jpl.nasa.gov

Len Day
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA. 91109

len.day@jpl.nasa.gov

Abstract— This study examines the issues that should be
considered when migrating legacy flight software
implementations from a single processor to a multi-core
environment. With the increasing availability of space
qualified multicore processor single board computers, the
flight software community must be prepared to utilize this
new technology. Most existing flight software created at the
Jet Propulsion Laboratory (JPL) is running on single core
RAD750 processors with the Wind River vxWorks real-
time operating system. Projects including the Mars
Exploration Rovers, Mars Science Lab, Aquarius and many
others utilize this platform. As always, it is desirable to
reuse as much of the existing software architecture and
source code as possible. This holds true for migration to
multicore as well. We initiated this study to explore the
most significant software migration issues to consider and
the potential for innovations that were previously not
realizable with a single core processor. A potentially
significant benefit of adopting a multi-core implementation
is improved system reliability through multi-core fault
recovery mechanisms. Several options are available for
implementing improved fault tolerant software systems
using multicore. These may include dedicated cores for
fault monitoring, redundant instances of critical functions
or combinations of these with associated recovery
mechanisms.

Multicore implementation of existing real-time sequential
applications does not necessarily improve processing
performance. An existing real-time application utilizing a
single core processor architecture already executes “fast
enough” with some amount of margin. A multicore
implementation may increase the performance margin for
real-time requirements of an application as well as reducing
development cost associated with a “tight fit” and enabling
more complex applications. This depends on how much of
the application can be parallelized. According to Amdahl’s
Law an 8-core processor will generally double the
execution speed of an application that has a parallelizable
portion of 50%. An application having a 95%
parallelization may see a speed increase by a factor of six.
However, it is possible that tightly coupled applications
may not fully benefit from symmetric parallelization due to
added communications overhead between cores. Wind

River has recently marketed a new product called the
Hypervisor, which enables multiple instances of one or
multiple operating systems to run on assigned cores. This
provides a virtualized asymmetric multiprocessing
capability allowing existing software targeted at a single
processor to be migrated into a multicore environment
gradually while freeing the developer from explicitly
managing cores. Several vendors will be releasing space
qualified multicore single board computers within a couple
of years, with development systems that are currently
available and this should be taken into account in
architecture and design today.

In this paper we will discuss potential benefits and pitfalls
when considering a migration from an existing single core
code base to a multicore processor implementation. The
results of this study present options that should be
considered before migrating fault managers, device
handlers and tasks with time-constrained requirements to a
multicore flight software environment. Possible future
multicore test bed demonstrations are also discussed.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. KEY CONSIDERATIONS FOR MULTICORE FLIGHT
SOFTWARE MIGRATIONS .. 2
3. A FLIGHT SOFTWARE MIGRATION PATH....................... 4
4. CONCLUSIONS ... 6
REFERENCES .. 6
ACKNOWLEDGEMENTS ... 6
BIOGRAPHY .. 6

1. INTRODUCTION
The benefits of multicore implementation of space qualified
processor platforms are expected to enable future space
missions to incorporate far greater autonomy and fault
recovery capabilities than current single core architectures.
Spacecraft operations, instrument control and onboard
image processing could all exist within one multicore
platform, minimizing size, weight and power (SWaP)
requirements. For this to occur, careful consideration must
be given as to how these functions should be distributed
among the available cores, how the memory, interrupts, I/O

 1

mailto:kenneth.w.vines@jpl.nasa.gov

resources and even multiple instances of the operating
system are to be managed.

It is desirable to utilize legacy flight software at JPL that is
developed to run on a single core processor such as the
BAE RAD750. Since the time critical components of the
software have been proven to meet their performance
requirements, these components should be able to meet
these requirements with greater margin given a dedicated
core and interfaces with equal or greater capabilities. But to
take full advantage of what multicore can offer, we need to
consider potential benefits of increased functionality by
utilizing multiple cores, improved fault recovery
mechanisms and integrated instrument flight software
functions.

Several space qualified multicore platforms will become
commercially available in the near future. Prototype
versions will be available even sooner. Planning a path for
migration to multicore can begin by considering some key
issues regarding architectural choices that are available.

2. KEY CONSIDERATIONS FOR MULTICORE
FLIGHT SOFTWARE MIGRATIONS

When analyzing the feasibility of migrating legacy flight
software to a multicore platform, several key issues should
be considered. Does the legacy software architecture easily
lend itself to a distributed processor implementation?
Should software modules having time-critical performance
requirements be allocated their own core or can they coexist
with other modules? Does a single core have the capability
to meet these performance requirements? What are the I/O
bandwidth requirements for each of the assigned cores?
Does the effort required for a multicore migration of this
application warrant the advantages of its implementation?
What parts of the system lend themselves to operating
system or hypervisor allocation of resources and what parts
may require their resources to be explicitly allocated (as in
a dedicated core)? How can separation of software
components increase system reliability and perhaps reduce
development cost of less critical components? This section
addresses some of these concerns.

Multicore Aware Operating Systems and Hypervisors

A Symmetric Multiprocessing (SMP) operating system
manages all processor cores by assigning tasks to available
processor cores and moves tasks among the processors to
provide load balancing. A software component having
significant processing requirements may be written to take
advantage of multiple cores by multithreading, but could
require a substantial development effort to implement.
Operating systems that support unsupervised Asymmetric
Multiprocessing (AMP) enables the user to configure each
core with it’s own operating system and functional software

components. It is possible to distribute different operating
systems among the cores. The user must also assign cores
such that the required resources are provided. Functional
software components of an existing software architecture
need to be partitioned and assigned an affinity to a specific
core. Time critical components will most likely require a
dedicated partition, whereas multiple non-time-critical
components may be assigned to a shared partition, while
keeping in mind the resources available to the assigned
core. An advantage of an unsupervised AMP
implementation versus SMP is the legacy software
components scale well with minimal modification.

Figure 1 – Unsupervised AMP

Supervised AMP provides dynamic core assignment of a
partition containing an O/S and some number of functional
components. As with unsupervised AMP, one partition is
assigned per core. A hypervisor is a hardware virtualization
manager that provides a virtual board (VB) interface.
Virtual boards share one or more cores during execution. A
hypervisor usually schedules virtual boards that run on a
shared core based on priority assignment or round-robin.

 2

Figure 2 – AMP with Hypervisor

The developer may assign multiple components of a legacy
flight software system to a partition. The O/S residing in
the partition schedules the component within the partition.
The supervised AMP implementation allows different types
of operating systems to be dynamically assigned.
Alternatively, running no O/S within a partition is possible
(known as bare metal implementation). Therefore, as the
supervisor assigns various functional components to a core
during operation, it is possible various operating systems
are being run on a core at any given time.

Analyzing Legacy Software for Multicore Distribution

Existing legacy flight software most likely consists of some
number of functional components. These components
should have well defined time-constraints. A component
may execute one or more tasks at a specified priority.
Application program interfaces (APIs) should also be well
defined among the software components. The API should
define all messages, events and memory specifications for
the component. In addition, hardware interfaces required
for use by the component should be defined. Given this
information, a software designer can begin to consider how
to most effectively distribute these components onto a
multicore processor platform.

The existing flight software architecture was developed to
run on a single processor core and has proven to meet the
project system requirements for which it was designed.
Migrating the legacy code to multicore can improve the
system performance margin and allow for additional system
functionality and robustness. It is assumed here that the
processor performance for each core in a given multicore
device is at least equivalent to the legacy processor. For an
unsupervised AMP implementation, the legacy software
components can be separated into partitions that will each
run on a dedicated core. As one would expect, the most
time-critical components may need to be assigned
individually to a dedicated core. Some external devices may

be directly accessible to only one core or a subset of cores
depending on the platform. Core assignment of the
functional components should take this into consideration
to avoid unnecessary data traffic between cores. Device
driver components will be assigned to the core that will
interface to the specific device. Devices that need to be
shared among cores may require updates to the driver to
provide multi-access capability. Alternatively, a device
handler in the application may be developed to provide an
API for shared access to the device. Ideally, components
that require common device access will be assigned to a
common core.

Legacy fault monitoring mechanisms can be upgraded to
take advantage of the capabilities of a multicore processor
architecture. As an example, software components may be
swapped between cores if a fault monitor determines a core
or its interfaces are non-functional. On an unsupervised
AMP multiprocessor system, the fault monitor may
command a functional component to transfer to an alternate
partition, where the active component on the failed core is
deactivated and the corresponding component on an
alternative core is activated. Other possible multicore fault
recovery mechanisms are discussed later.

Other than a possible fault recovery scheme as mentioned
above, the component and O/S assignments remain static
for most unsupervised AMP implementations. The effort
required to migrate to an unsupervised multicore
environment will depend on the coupling of resources and
components in the legacy system. Careful consideration of
partitioning the functional components will improve the
probability of a successful migration. A hypervisor
implementation can reduce the implementation effort
because the legacy software components can be distributed
to any number virtual board partitions. The dynamic virtual
board environment can be configured for optimum
performance and flexibility, minimizing legacy code
modification effort. As with unsupervised AMP, time-
critical components should be assigned to a dedicated
virtual board and core. Also, care should be taken to
configure the hypervisor to map the components requiring
devices to cores that provide an interface to the device.
Some hypervisors provide options for device access among
cores. A direct access option to a device provides native
core performance. Shared access may be provided, but with
some performance reductions. An example migration to a
hypervisor based multicore system is shown in section 3.

Interprocess Communication

Migration of existing frameworks such as those for
Interprocess Communication (IPC) to a multicore platform
is needed. Fortunately multicore aware operating systems
provide mechanisms that reduce the complexity of
migrating some of these frameworks. Multi-OS
Interprocess Communication (MIPC) and the Multicore

 3

Communications API (MCAPI) provide an API that routes
messages between cores and virtual machines. Once an
existing framework is modified to utilize the mechanism
provided by the O/S, reusable libraries can be generated for
future project use.

Interrupt and Device Handlers

An interrupt source from a device or a discrete signaling
event is handled by an interrupt service routine running on
a core that is assigned to service the event. Software
components residing on a processor core that require access
to device or external event that is serviced by another core
may utilize IPC communication with the device or event
handler if throughput response meets the performance
requirements. In a virtualized hypervisor environment,
multiple virtualized components may access shared devices.
The hypervisor manages the scheduling of device access
among multiple virtualized software components as shown
in Figure 3.

Figure 3 – Virtualized Device Access

Fault Handling Considerations

Fault monitoring mechanisms for legacy flight software can
be enhanced to take advantage of multicore. As an
example, the Mars Science Laboratory (MSL) implemented
a fault recovery software component named Second Chance
that executed on a second string processor during Mars
entry, descent and landing (EDL). This component ran in
parallel to the primary system and consisted of a subset of
critical tasks to be performed in the case of primary
processor reboot during EDL, which did not occur. This
mechanism could possibly be modified to run on a
dedicated core, in addition to alternate processor strings. If
the O/S running a critical component such as EDL
experiences a failure or reboot, a fault monitor could
activate a Second Chance component on a dedicated
reserved core. Another possibility is to activate the critical
component itself on the reserved core if it is determined a
hardware failure has occurred in the primary core.

A fault monitor in a multicore processor system may be
distributed among multiple cores. In an unsupervised AMP
configuration, functional components are grouped along

with an O/S and assigned a core on which to reside. Fault
monitors can be included in the grouped components
assigned to each core. System status is communicated
among cores providing more robust fault monitoring.
Critical system state can be monitored by multiple cores,
where inconsistent state is determined by a voting scheme.
A hypervisor implementation can reduce the effort needed
to implement fault protection on multicore. Each software
component can run on a virtual board partition. A fault on
a virtual board partition can be contained and the virtual
board restarted on an alternate core autonomously by the
hypervisor.

3. A FLIGHT SOFTWARE MIGRATION PATH
It may be preferable to migrate an existing traditional flight
software system to multicore using an incremental path
approach. Initially some of the software service frameworks
can be retooled for a multicore testbed environment. The
representative flight software architecture can then be
modified for multicore and perhaps additional fault
monitoring functionality can be implemented. Initially the
O/S or hypervisor can be used for resource allocation with
minimal impact on an existing implementation. A
partitioning of the legacy software into functional
components that coexist on a virtual board will minimize
the effort needed for a multicore migration. System
performance can be monitored on the testbed as the
configuration parameters for the hypervisor are modified
for optimization.

Application Partitioning Description and Modeling

A Synthetic Aperture Radar (SAR) instrument controller
provides an example of a real-time legacy software system
that has been used on several projects at JPL. The software
resides on a PowerPC based single board computer running
the Wind River vxWorks operating system. The Radar
Instrument Controller consists of nine functional modules,
each executing one or more vxWorks tasks. An example of
a possible multicore migration of the legacy flight software
to a hypervisor based multicore system is shown in Figure
4. An analysis of the existing functional components was
performed based their known performance and interface
requirements. It was determined that the components could
be grouped into six partitions. Each partition resides on a
hypervisor virtual board (VB). Since the hypervisor handles
core scheduling, the legacy software components do not
require modification other than some possible API updates
for inter-process communication. The multicore
architecture provides additional processing capability and
therefore a new software component is added for onboard
SAR processing (OBP). OBP does not require real-time
response, therefore it may run on a non-real-time operating
system, such as Linux. Some existing components of the
example software system do not necessarily require real-

 4

time response and my also be migrated to a non-real-time
O/S if desired.

Figure 4 – A Hypervisor-based multicore migration.

This migration example shows four cores allocated to the
Radar Instrument Controller. Other available cores may be
allocated to spacecraft specific functions or other
instruments. The hypervisor is configured to allocate the
virtual boards to the available cores as shown in Figure 4.
The most time-critical software component resides on VB3
and is assigned an affinity to Core 2. No other VB is
allowed to run on this core during nominal operation.
Components assigned to VB1 and VB2 are assigned an
affinity for Core 1, VB4 is assigned to Core 3 and VB6
assigned to Core 4. VB5 contains the OBP is allowed to run
on both Core 3 and Core 4 as a SMP component. The
hypervisor handles scheduling of the virtual boards among
the cores. VB1 and VB2 implement prioritized scheduling
for Core 1, VB4 and VB5 for Core 3, VB5 and VB6 for
Core 4.

External devices are assigned to device drivers directly
residing on the cores shown in the figure. In the example,
access to data residing on the Solid State Recorder (SSR)
and Non-volatile Memory (NVM) is required by multiple
components. The hypervisor is configured to share access to
these devices. Some modification of the device driver may
be required. An alternative implementation is to provide a
device handler service at the application level to share
device data among functional components, depending on
the throughput limitations.

The Radar Instrument Controller has a fault manager that
monitors system state and telemetry. For this multicore
migration, the fault manager is divided among 3 virtual
boards. Fault monitoring functionality is distributed. As
with the original single core implementation, each
component periodically sends status to the fault monitor. If
a component reports invalid status or fails to report any

status, the fault handler may reconfigure virtual board
assignments as deemed necessary. In Figure 5, Core 4 has
failed. VB5 and VB6 are not responding. The fault
detection mechanism instructs the hypervisor to assign VB5
and VB6 to Core 3. Now three virtual boards are running
on Core 3 in with prioritized scheduling. The device drivers
for the SSR and NVM that were assigned to Core 4 are now
assigned to Core 3.

Figure 5 – Core failure fault recovery

The ability to dynamically change virtual board core
assignments will depend on the capability of the hypervisor.
However, a fault recovery manager could have the
capability to enable and disable functionality per virtual
board if the hypervisor does not provide this functionality.

Testbed Implementation
A testbed platform containing a prototype multicore flight
computer architecture provides an invaluable path for a
project to gain confidence and experience in the ability to
eventually utilize multicore in space based platforms.
Several vendors currently provide or will soon provide
radiation-hardened (>100 krad) versions of multicore single
board computers for use in spacecraft platforms. These rad-
hard SBCs contain multicore Power-PC or X86 processor
architectures with Rapid I/O, SpaceWire and other I/O
options. Many of these vendors offer up to 8 processor
cores. The boards also provide hardware assisted processor
buffer management and device memory access
management. Although some hypervisor implementations
provide multicore buffer management in software when
needed, a hardware implementation is preferable. Prototype
versions of these boards are currently or soon will be
available and can provide a test platform to migrate
existing software components to a multicore environment.

 5

4. CONCLUSIONS
This paper has discussed many of the issues that should be
considered when migrating legacy flight software to a
multicore platform. We presented an example path to
migrate existing legacy software to multicore. Several
commercially developed space qualified multicore
platforms are currently or will soon be available. Migration
of existing functional software components onto a prototype
multicore processor platform will enable flight software to
take advantage of multicore space platforms in the near
future.

REFERENCES
[1] Wesley Powell, Michel Johnson, Jonathon Wilmot,

Raphael Some, Kim Gostelow, Glen Reeves, Richard
Doyle, “Enabling Future Robotic Missions with
Multicore Processors,” American Institute of
Aeronautics and Astronautics, 2011.

[2] Berger, R., Bayles, D., Brown, R., Doyle, S.,
Kazemzadeh, A., Knowles, K., Moser, D., Rodgers, J.,
Saari, B., and Stanley, D., ―The RAD750TM- A
Radiation Hardened PowerPCTM Processor for High
Performance Spaceborne Applications‖, IEEE
Aerospace Conference, CP849, Vol. 1, IEEE, Big Sky,
MT, 2001, Pages 2263 - 2272 vol.5.

ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

BIOGRAPHY
Kenneth Vines is a senior software
engineer at the Jet Propulsion
Laboratory in Pasadena, CA. He has
developed and/or led development and
testing of flight software for various
suborbital SAR instruments, Cassini
Radar and the Shuttle Imaging Radar
programs. He has a BS and MS degree

in Computer Science from California Polytechnic State
University Pomona.

Len Day is a senior software engineer
at Jet Propulsion Laboratory in
Pasadena, CA. He has been involved in
many space missions going back to
Viking and including Seasat, Milstar,
Cassini, MSL and others. Additionally
he has substantial industry experience
in areas of operating systems,

networking and low level software in general.

 6

 7

