
Tool Use Within NASA Software Quality Assurance

Denise Shigeta, Dan Port
Shidler College of Business,

University of Hawaii
dshigeta@gmail.com, dport@hawaii.ed

Allen P. Nikora, Joel Wilf
Jet Propulsion Laboratory,

California Institute of Technology
{Allen.P.Nikora, Joel.M.Wilf}@jpl.nasa.gov

Abstract

As space mission software systems become larger
and more complex, it is increasingly important for the
software assurance effort to have the ability to
effectively assess both the artifacts produced during
software system development and the development
process itself. Conceptually, assurance is a
straightforward idea – it is the result of activities
carried out by an organization independent of the
software developers to better inform project
management of potential technical and programmatic
risks, and thus increase management’s confidence in
the decisions they ultimately make. In practice,
effective assurance for large, complex systems often
entails assessing large, complex software artifacts
(e.g., requirements specifications, architectural
descriptions) as well as substantial amounts of
unstructured information (e.g., anomaly reports
resulting from testing activities during development).
In such an environment, assurance engineers can
benefit greatly from appropriate tool support. In order
to do so, an assurance organization will need accurate
and timely information on the tool support available
for various types of assurance activities. In this paper,
we investigate the current use of tool support for
assurance organizations within NASA, and describe
on-going work at JPL for providing assurance
organizations with the information about tools they
need to use them effectively.

1. Introduction

A large number of tools have been developed that
can be used to assess the quality of software systems
during development. These include, but are not limited
to, (1) modeling and analysis tools such as model
checkers, theorem provers, and code analyzers, (2)
measurement tools such as software reliability growth
models and test coverage analyzers, (3) traceability
analysis tools, and (4) tools for assessing product and
process compliance to standards. There appears to be
significant interest in assurance tool development and
evaluation research. Indeed, over 50% of the technical
presentations, excluding technical updates, at NASA’s
2009 Software Assurance Symposium (SAS) [1]
technical presentations were directly related to

assurance tools (examples: “Automated Tool and
Method for System Safety Analysis” and “Technology
Infusion of CodeSonar into the Space Network Ground
Segment”). However, on a recent survey of JPL quality
assurance personnel and assurance customers, 100% of
the respondents either agreed or strongly agreed with
the statement “tool use and automation for SQA is
limited – manual methods dominate”, indicating
clearly that these types of tools are frequently not used
to their full effect within quality assurance efforts.
Further investigation at JPL revealed that impediments
to their use include high cost, lack of user training, a
steep learning curve, failure to meet critical user needs,
lack of institutional coordination, and high overhead in
identifying and evaluating potentially useful tools. In
addition, there is often little understanding of how
these tools are related to each other, and how they are
most effectively used together within a given assurance
effort. These factors contribute to the observed
underutilization of tools in supporting software
assurance activities, decreasing the overall
effectiveness of the assurance organization, and
increasing the likelihood of partial or complete mission
failure resulting from a higher residual defect content
in the fielded system.

2. NASA Software Assurance

Software systems have become increasingly
critical sources of risks in the missions and systems
built by NASA. Software Assurance (SA) is “the
planned and systematic set of activities that ensures
that software life cycle processes and products conform
to requirements, standards, and procedures.” [2] It is
also defined as “the level of confidence that software is
free from vulnerabilities, either intentionally designed
into the software or accidentally inserted at anytime
during its lifecycle, and that the software functions in
the intended manner.” [3] Systems and Software
Assurance is an umbrella risk identification and
mitigation strategy for mission, reliability and safety
assurance of software systems. The purpose of full life
cycle assurance activities is to identify and reduce risks
arising from quality uncertainty. For example, “Are the
identified risks sufficiently comprehensive? Has
anything important been forgotten? How frequently

has the same mistake been made in the past? What
have been the consequences of such mistakes?”
Assurance is typically performed by assurance
professionals within a Software Quality Assurance
(SQA) engagement, while conducting verification and
validation (V&V) of systems and software artifacts, or
within an independent V&V (IV&V) assessment. The
Software Quality Assurance (SQA) group at NASA’s
Jet Propulsion Laboratory (JPL) is one of many
organizations developing or assuring large mission-
and/or safety-critical systems.

Numerous studies have observed that error
detection in the earlier phases of a software system
lifecycle yields much lower costs of fixing and
reworking software systems (a factor of 50 to 200)
[4],[5],[6],[7]. Among various systems and software
assurance activities, risk assurance and requirements
traceability assurance are two critical and valuable
ones that can be addressed early and incrementally
revisited in the system development life cycle. When a
party not directly involved in generating the risk
specifications (i.e., risk description and mitigations
specified in projects’ risk analysis documents) or
Requirements Traceability Matrices (RTM) performs
assessment on these artifacts, it is generally called
assurance. Assurance of systems and software risk
documents (risk assurance) aims to increase the
confidence that risks identified are complete, specific,
and correct. Requirements assurance is concerned with
independently (from requirements developers)
assessing and ensuring the quality of the requirements.
Chiefly this includes assessing the correctness and
completeness of the requirements for which tracing is
key. This tracing encompasses requirements at various
granularities as well as their relationships with other
artifacts (e.g., tracing between requirements and test
cases) and within artifacts (e.g., tracing between
Nonfunctional and Functional requirements).

3. Need for Software Assurance Tools

As software systems become increasingly
complex, they become larger sources of risk in a
project. The purpose of all assurance activities is to
reduce risk arising from quality uncertainty. Manual
methods of SA contribute to this risk via human error
and lack of coverage in assuring a system, among
others. SA tools can provide increased efficiency,
through automation, as well as increased effectiveness,
by showing that assurance activities provide more
confidence in the software system.

3.1 Tools to Increase Efficiency

Current as well as previous assurance efforts at
JPL include work focused on improving the efficiency

of analyzing large bodies of requirements for specific
characteristics. Previous work at JPL indicates that
defective or misunderstood requirements are a
significant source of anomalous behavior observed in a
system during mission operations [8],[9]; detailed and
accurate analyses of the requirements can reduce the
risk of introducing defects into the requirements
themselves and propagating those defects into the
implemented system. Since a typical space mission of
the type developed at JPL can be specified by 10,000
or more individual requirements, unaided manual
analysis is no longer efficient for assuring that
specification documents accurately reflect the system
being developed.

An illustrative example of the type of
requirements analysis that assurance personnel perform
is the problem of assuring a functional to non-
functional requirements traceability matrix (RTM).
Determining the correctness and completeness of the
many-to-many relationships between functional and
non-functional requirements (NFRs) is a particularly
tedious and error prone activity for assurance personnel
to perform.

For NASA the development of RTMs is a
mandated activity. Because of the high risk typically
associated with NASA projects, assurance of RTMs is
also a mandated activity, albeit one that may not be
accomplished as effectively or efficiently as desired.
Interviews with SQA personnel indicate that “Spot
checking” and “completeness by expectation” are
phrases that best describe the heuristics currently
applied when assessing traces.

Adding non-functional requirements (NFRs) to a
trace analysis provides a further challenge. Assurance
staff are responsible for ensuring that all NFRs trace to
all appropriate functional requirements (or FRs), and
that there are no inappropriate or spurious traces (i.e.,
requirements that with certainty do not trace, or anti-
traces). This is also referred to informally as ensuring
the completeness and correctness of the NFR traces.
What makes this difficult is that the degree or strength
of a trace is not considered; it is a binary relationship,
each NFR either traces or anti-traces to an FR. What
exactly determines an appropriate degree is generally
unspecified, but the intent is to only trace an NFR to an
FR upon which it has an observable effect. We refer to
the RTM sub-matrix of traces from NFRs to FRs
simply as the NFR-FR matrix.

Since there may be missing traces, this is a highly
effort-intensive activity because assurance personnel
must check all possible traces, not just those already
indicated in a traceability matrix. In addition,
traceability assurance is a highly detail-oriented and
information-intensive activity, unguided and tedious
for humans to perform.

There are three major challenges to the manual
assurance of NFR to FR traces: size, complexity, and
effort/cost. We discuss each below.
Size

Consider a very small software requirements
specification consisting of just 50 requirements, 20 of
which are FRs and 30 of which are NFRs. There are
20 x 30 = 600 possible traces between the FRs and
NFRs that may have to be assured. It is not optimal for
analysts to assess 600 traces manually, but it is
possible. In contrast, the Mars Reconaissance Orbiter
(MRO) had over 7500 requirements, a portion of which
were NFRs. If we assume 7300 FRs and 200 NFRs,
there could still be 1,460,000 traces to assure.
Complexity

NFR to FR trace assurance is a matching problem,
central to graph theory, which can be modeled as a bi-
partite graph (the tracing graph) on the two sets of
requirements NFR and FR where an edge indicates that
a given non-functional requirement affects the related
functional requirement. Such bi-partite graphs are
informationally equivalent to an NFR-FR matrix. The
matching problem is relevant due to the fact that every
NFR must trace to at least one FR and that the focus is
on validating a “tracing” from the many “valid”
combinations of tracings possible (that is, not all valid
traces of an NFR-FR are expected to be relevant or of
interest).

Even though the tracing graph is expected to be
relatively sparse (generally each NFR traces only to a
small percentage of FRs), assuring completeness
requires examination to ensure that edges are valid and
no edges are missing. This implies that the complete
bi-partite graph K(NF,F) with |NF|*|F| edges must be
reviewed to verify the trace/anti-trace relevancy. This
requires O(|F|^2) number of steps 1.

Part of the assurance process is determining the
risky and non-risky areas, thus we cannot reduce the
complexity by prioritizing or reducing the set of
requirements to investigate (the “investigation set”)
based solely on external risk or cost.

We have taken a somewhat simplified view of the
problem. At JPL, requirements tend to be hierarchical:
there is “flow-down” from one level to another (hence
the terms upwards/downwards tracing). Thus if there is
a trace at one level, this trace will flow-down to the
requirements below it. This can significantly reduce
the number of traces to be verified. However, in order
to “depend” on this hierarchy, one must first validate
that the trace is at the appropriate level. Hence,
“layering” the requirements only partially reduces the
complexity of the assurance problem.

1 assuming |F| > |NF|.

Effort/cost
NFR to FR tracing assurance is a costly and effort

consuming activity. Consider the MRO project with
7500 requirements. If we assume that there are
1,460,000 traces to assure and assume an average of 1
minute per trace audit (a highly optimistic estimate),
then we expect |7300|*|200|/60 = 24,333 person-hours
of effort. With a 40-hr work week, it would take 11.7
people an entire year to complete the work. As a result,
assurance personnel rarely perform exhaustive
analysis. Rather, they become “familiar” with the
requirements and use a variety of approaches to
approximate a completeness check. A common
approach is to “spot check” to rapidly identify potential
problem areas and then to focus on these. Another
popular approach is to only validate the existing traces
and then prune and expand these. Assurance personnel
will augment these approaches by considering related
groups of requirements. For example, if there is a trace
from a particular NFR to a FR, then it is often fruitful
to look at the requirements that are similar or strongly
related to that FR for traces.

All these approaches assume a sufficient
familiarity with the entire set of requirements and rely
heavily on the experience and domain knowledge of
assurance personnel. Given this assumption,
completeness is addressed by comparing a given trace
to what traces are “expected” relative “not expected” in
the particular system. Gaps in domain knowledge are
unavoidable (a person cannot keep all knowledge of a
system in their mind at one time), thus making it
difficult to gauge the believability of a completeness
audit.

It is clear that the above challenges point to the
need for automated tool support. However, such
support should not cause a significant change to
existing assurance practices – otherwise, accustoming
assurance personnel and other stakeholders to the new
practices can substantially decrease near-term and
intermediate-term efficiency.

Clearly automated traceability techniques could
greatly assist in guiding assurance efforts such as NFR-
FR tracing. For some types of traceability analysis,
Hayes and her colleagues at the University of
Kentucky have developed Information Retrieval (IR)
based techniques and tools [10]. However, general-
purpose approaches do not currently exist to assist with
the types of completeness or correctness assessments
described above.

3.2 Tools to Increase Effectiveness

At JPL there are three main areas that confidence
in the sufficiency of manually performed assurance is
an issue. These are: the analysis of risks to identify
top-N risk lists with recommended risk scores; the

analysis of requirements to characterize them and
identify requirements defects; and to analyze the large
anomaly repositories to determine how (or whether)
the frequencies and types of software anomalies are
changing over time. The common element of these
efforts is that each one seeks to assure the quality of a
key activity in the software systems lifecycle. While
the concept of assuring requirements is common
practice, the concept of risk assurance in the software
industry is not. For example, are the identified risks
sufficiently comprehensive? Has anything important
been forgotten? How frequently has the same mistake
been made in the past? If a development organization
is to improve it must learn from its past and apply that
knowledge to the effective management of risk.

Leveson remarks that in modern complex systems,
unsafe operations often result from insufficient risk
analysis [11]. Here risk is defined as a combination of
the likelihood of an accident and the severity of the
potential consequences. More generally, Boehm
defines software risk a potential for the development or
product to have an unsatisfactory outcome to project
stakeholders [12]. Unsatisfactory software project and
system outcomes (e.g. problems and failures) due to
insufficient risk analysis have been extensively re-
ported and documented in the literature such as [8],
[11], [12], and [13].

Insufficient risk analysis includes errors such as
failure to identify a significant risk (omission),
incorrect risk specification, redundant risks, vague or
poorly specified risks, risks without mitigation options,
and so forth. Such errors contributed to the demise of
NASA's Mars Climate Orbiter (MCO) launched in
December 1998. It was discovered that the developers
of the Ground navigation software used English Units
while the flight software developers used Metric Units.
The discrepancy in units biased trajectory calculations
in route and set MCO too close to Mars during its
insertion into orbit where MCO went silent and was
lost. The specific problem of incompatible units
between system components that led to the MCO
mishap was a well-known and documented risk on
previous projects, yet the development teams still
failed to identify it.

MCO is one of many examples of insufficient risk
analysis. Given the rapidly increasing costs and con-
sequences of software errors, understandably there is
rising interest in ensuring sufficient risk analysis is
performed. This has led organizations such as JPL to
employ risk assurance practices. Risk assurance is the
use of quality assessment techniques such as
verification and validation (V&V) to ensure that
sufficient risk analysis has been performed (i.e., the
risk analysis is as correct, complete, clear, and
actionable as possible).

A primary risk assurance activity is auditing risk
documentation. This is generally performed by
assurance personnel who read through documents to
identify risk analysis errors. To help encourage an
independent, objective and “un-blinded” perspective,
ideally the auditor has considerable experience across a
diversity of projects and is not directly involved in the
development. However auditing is fraught with a
number of value-degrading challenges relating to its
cost-effectiveness, reliability, confidence in results,
and the practicality in making use of historical data.
One particularly troublesome challenge has been
providing confidence in the completeness of a risk
analysis i.e. the degree of certainty that all significant
risks have been identified. There are two major
problems here – (1) accounting for previously
unknown risks, or the so-called unknown-unknown’s,
and (2) blindness or bias against recognizing known
risks or risk patterns, sometimes referred to as
“unknown knowns.” Several techniques have been
developed to deal with these problems. Generally these
involve risk identification audit checklists and
guidelines based on historical risk experience such as
“top-10” risk lists, risk area taxonomies, and risk
analysis processes. However, generating these aids can
be cumbersome and costly, and it can be difficult to
keep them current. Furthermore, when manually
generated, these aids too are subject to risk assurance
challenges such as completeness.

4. Example Use of Tools for SA

Text-Mining Support for Trace Assurance

We now describe an approach for using text
mining to support trace assurance. For clarity, we
emphasize a few things up front. First, the method does
not aim to generate an RTM. Indeed, the method
requires an existing RTM as input i.e., the RTM to be
assured. Second, the aim of the method is not to
automate the detection of or assure FRs or NFRs.
However, a by-product of tracing assurance can help
with this. Last, the method is not designed to detect
vague or poorly stated requirements.

With the above in mind, we state that a successful
method for automated support of trace assurance at
JPL would meet the following vital objectives: 1) Must
be compatible with the way assurance personnel
address trace assurance (e.g., “expected” and
“unexpected” traces based on prior experience, domain
knowledge, and familiarity with the requirements); 2)
Must be empirically driven, adjusting to the quality of
the requirements specification (e.g., vaguely specified
requirements should result in more conservative
automated results) and adjusting to the quality of a
given RTM; 3) Must be easily implemented and

integrate with existing requirements managers (e.g.,
DOORS, RequisitePro, etc.); 4) Must have an
established theoretical foundation; Must be practical to
use (e.g., low-learning curve) and provide meaningful
guidance; 5) Must be based on open methods and
technologies (assurance cannot be based on black-box
solutions); 6) Must reduce overall effort, increase
efficiency of effort, and increase confidence in results.
Note that Hayes, Dekhtyar, Sundaram, and Howard
have posited essential requirements for any
requirements tracing tool as examined from the user’s
perspective. Objective (5) ties to their Usability sub
requirement (of Believability) [15].

We now describe an approach to meet the above
objectives in a series of concepts and examples given
below.

Trace investigation sets

 The fundamental challenge for trace assurance is
effectively managing the verification of a large number
of traces and anti-traces. A natural means of addressing
this is to employ a divide and conquer strategy that
partitions these sets into more manageable
investigation subsets based on meaningful rules and
empirical properties of the requirements. For example,
an obvious rule is “each NFR must trace to at least one
FR” and the resulting investigation set (a subset of the
traceability graph that is under assessment) would
simply be all those NFRs without traces. Determining
rules and properties and making them actionable (e.g.,
if an NFR has no traces then it must be removed or be
reported as having missing traces) helps address
objective (5).

Aligning rules and empirical properties with
assurance personnel’s a priori knowledge helps meet
objective (1). Partitioning the assurance tasks into
investigation sets greatly reduces the complexity and
narrows the focus of the assurance effort. Furthermore,
each investigation set implies particular assurance
activities (e.g., look for a missing trace), “guiding” the
effort to be more efficient and effective thereby
helping to meet objective (7). If some investigation sets
have a low risk (when appropriately defined) of its
elements being incorrectly determined (as being in the
set, for example), then such sets can be eliminated or
“lightly” assured further helping to satisfy objective
(7).

To illustrate, assume that as we examine the
traceability matrix to be assured, we notice an
observable property between a pair of requirements
called “high-similarity” (perhaps each requirement
contains many of the same words, e.g.) which we
believe is highly correlated (but this is not certain) with
requirements that have been associated to each other in
the traceability matrix (meaning that it is highly

correlated with our notion of trace). We note that
absence of this property between two requirements
does not imply that they anti-trace. The absence of
“high-similarity” provides no information, whereas the
presence of “high-similarity” appears to provide
evidence of trace.

With this idea in mind, let us examine the notion
of trace investigation sets further. In the previous
example, we discussed the trace set or T. Fig. 1 shows
T in the top left; all NFRs trace to at least one FR, but
do not trace to every FR. By simply examining the
edges that do not exist in T, we obtain the anti-trace or
AT (shown in the top middle section of Fig. 1). Based
on T and AT and our notion of “high similarity”
(called HT), we can generate four trace investigation
sets L, M, F, N (see Figure 1).

Figure 1 - Partitioning requirements into investigation
sets

We consider traces in the investigation set L

(T∩HT, as shown in Figure 1) to be low risk as they
have two independent sources corroborating the trace
(they were in the RTM under assessment and we
observed the high-similarity property). Items in M are
at high-risk of being possible omissions from T as we
expect requirement pairs with high-similarity to trace
(but not the converse). Items in M need to be carefully
checked to see if they are indeed traces. We have little
information about items in F, but as they did not have
high-similarity, they should be checked first as
possible bad traces (also called false positives or errors
of commission). Last, there is little to say about items
in N other than that they do not have high-similarity
and they did not trace, so we first try to verify that they
are anti-traces.

The example just presented, while simplified and
overly generic, is in essence our method. The
complexity reduction, work avoided (assuming we do
not check the low-risk set L), and increased assurance
efficiency is self-evident. Increased confidence in the
assurance results is in part self-evident, but also

depends greatly on our confidence in the correlation of
the high-similarity property and requirements that
trace.

Finding properties that are practical to observe and
in which experienced assurance personnel have high
confidence is a key component of our method. Also,
finding properties that determine both inclusion and
exclusion of elements into an investigation set is
essential to effectively addressing the trace
completeness problem; this is discussed next.

Case study: NFR PROMISE Project 10

The following case study demonstrates how
effective the method was compared to a manual trace
assurance. The case study is taken from the PROMISE
NFR data set [14], and considers Project 10 (P10), the
requirements specification for an online version of a
game like “Battleship.” P10 has 15 NFRs and 38 FRs
and a manual NFR-FR requirements trace was
generated and is illustrated in Figure 2 to provide an
initial feel for the complexity of the trace assurance
task at hand.

Figure 2 – P10 NFR-FR tracability graph

Using the above as an input to the tool, the
investigation sets are generated. It is straightforward to
express the rules as list (matrix) index selectors in R.
Figure 3 shows snippets of two different ways to report
the investigation sets (you are not expected to read
these tables, they are illustrative only). The report on
the left provides a compact view while the report on
the right uses the investigation sets to annotate the
RTM with color to help alert assurance staff of
potential issues.

Figure 3 - P10 NFR-FR partition investigation sets

report examples

These results are used to perform an independent
assessment of the investigation set accuracy. One
author went through each set element-by-element

assessing the veracity for being in that set (except “no
info” sets which make no claims about the
requirements). Results are listed in Table 1 where each
entry x\y is read, “x were found correct from y
elements.” An (a~b) entry means the assessor was
unsure about b-a of the elements. These could be
correct, but there is some doubt.

Table 1 – Accuracy of investigation sets

Our independent verification gives the
investigation sets 95%-98% accuracy. The verification
effort took 188 minutes. This is not surprising given
that the assessor had to review all but 107 of the 507
potential traces and anti-traces.

Next, we had a JPL assurance staff member
perform a fully manual P10 trace assurance by means
usual to them. Table 2 compares the results of this
effort with the author’s assessment guided by the
investigation sets generated.

Table 2 – Comparison of manual and investigation sets

Verified trace/anti-trace means that a trace/anti-

trace was reviewed and found correct. For the
investigation set based assurance, elements in the “low
risk” sets R10 and R11 were only “lightly” reviewed to
achieve the verification. Here very few elements in the
low risk sets were found to be incorrect. In comparison
with the manual trace assurance, the set based
assurance effort took 58% less effort, found 120%
more “high risk” missing traces, and 154% more
spurious traces (not so risky, but resource wasteful).
The verification rates were comparable, but since any
problem found reduces the number of verified
elements, it makes little sense to compare the increase
or decrease of these. The author’s experience in
performing the set guided assurance felt more focused
and less tedious than the manual approach. While this
is wholly subjective, consider if the elements in the
low-risk sets were not reviewed at all. This would
remove 59% of the trace/anti-trace review size, and
assuming a constant effort per trace/anti-trace review,
would result in a decrease in 41% of the effort. Given
that in this evaluation we saw a 58% decrease in effort,
there is likely further efficiencies present than only
reducing the number of items to review (and recall that
the author did not entirely eliminate review of the low-

risk elements). Neither the author nor the assessor was
familiar with P10 beforehand.

Manual trace assurance was performed on 10 of
the 15 projects from the NFR PROMISE data set.
These, along with the complete details for the P10
evaluation above will be made available there for
review.

5. Current Use of Tools for SA

Several dozen tools having potential applicability
to SA are currently being surveyed as part of an on-
going task at JPL to determine each one’s applicability
or support in different areas of assurance. SA areas
identified at JPL include architecture, code, contractor,
cost, delivery, product, project, reliability,
requirements, resource, risk, safety, schedule, security,
test assurance, and assurance management.

Assurance management addresses the issue of
knowing whether the appropriate set of and intensity of
assurance activities is being done by considering the
optimal cost/benefit/risk balance, and assesses whether
the project is health from the SQA perspective.
Requirements assurance involves peer reviews of
software requirements, ensuring completeness of
requirements, as well as performing requirements
tracing. Reliability assurance looks at the level of risk
in the software system and the likelihood of potential
failures by evaluating and closing PFRs, performing
reliability analyses, and assessing the problem
reporting process. A related area is risk assurance,
which deals more specifically with risk tracking,
monitoring, and assuring the risk management. Safety
assurance involves performing and reviewing software
safety analyses, assessing the safety compliance, and
verifying the safety of the software design.

A preliminary assessment of SA tools and how
they apply to each assurance area has been done at
JPL, rating the tools on a 5-point scale from “provides
explicit support” to “inconsistent with/incompatible or
contraindicated.” A sample of SA tools and their
applicability is summarized in Table 33.

The Constructive Cost Model (COCOMO) is a
software cost estimation model, which computes
software development effort as a function of the size of
the project. COCOMO is especially useful in cost
assurance and also contributes significantly to project
and schedule assurance, which are directly related to
the amount of effort required. The Architecture
Analysis and Design Language (AADL) is a tool that
can be used to analyze system designs prior to
development, as well as support a model-driven
approach throughout the life of the system. AADL
explicitly supports architecture, reliability and resource
assurance. JIRA is a platform used by the development

team that can track bugs and tasks and monitor activity
for a project, which is essential to risk assurance.
CASRE is a quantitative assessment tool that is used to
estimate and forecast the reliability of software systems
during tests and operations. Its strength, therefore, falls
in the area of reliability assurance. ASCE by Adelard is
a tool used to develop, manage and communicate
safety cases, and is especially applicable to risk, safety
and security assurance. Coverity is a static code
analyzer used to find bugs and vulnerabilities in source
code. While static code analyzers are very useful in
code assurance, they can indirectly apply to safety,
risk, and reliability assurance, which are all related to
ensuring the success of the source code.

Table 3 - SA tool support or applicability
SA Tool High support for

assurance area
No support for
assurance area

COCOMO Cost, project,
schedule

Security

AADL Architecture,
reliability,
resource

Cost, process,
project, schedule,
assurance mgmt.

JIRA Risk Cost
CASRE Reliability Resource, schedule
ASCE Risk, safety,

security
none

Coverity Code Cost, process,
requirements,
schedule,
assurance mgmt.

6. Evaluating Use of Tools for SA

Evaluating SA tools is just as important as
important as using the tools themselves. Tool
evaluation is essential to knowing which is the best
tool for a given assurance task.

6.1 Tool Evaluation Criteria

The evaluation criteria focus on the following
aspects of tool acquisition and use:

Applicability: Tools are evaluated on the basis of how
well they support assurance activities (e.g. audit and
inspection of software artifacts) or assurance process
(e.g. findings tracking and reporting). Applicability
criteria are specialized to the type of artifact being
analyzed – for example, requirements analysis tools are
evaluated according to the extent to which they can
trace requirements forward and backward, how well
they are able to identify ambiguous and inconsistent
requirements, and the extent to which they can identify
potentially incomplete specifications (e.g, missing
functionality, missing inputs or outputs).

Effectiveness: Tools are also evaluated on the basis of
how well they perform their claimed capabilities. To
the greatest possible extent, these are quantitative
criteria. For example, quantitative criteria for
evaluating static code analyzers include the proportions
of false positives and false negatives, and hit rates such
as the proportion of array boundary violations flagged
by the analyzer that are actual violations in the
implemented systems, or the number of flagged null
pointer dereferences that are actual defects in the real
system.

Tool Availability: An additional set of evaluation
criteria focuses on a tool’s availability. These criteria
include the type of supplier from which the tool is
available (commercial domestic, commercial foreign,
NASA-developed, other U.S. Government, university,
open-source)2, length of time for which the tool has
been available (i.e., when was the first version
released?), length of time for which the supplier has
been in business, and tool cost.

Usability: Criteria for tool usability focus on the effort
required by users to learn how to operate the tool;
whether the tool’s documentation accurately describes
its setup and operation, and does so at a sufficiently
detailed level; whether the tool runs in multiple
development environments (e.g., Eclipse [16]) and
under multiple operating systems; and the degree to
which operating the tool in one environment is similar
to operating it in another; the tool’s technology
readiness level (TRL). The evaluation criteria also
examine the tool’s user interface to determine the
extent to which it conforms to the published standards
for a specific environment (e.g., if it runs under
Windows, does it comply with the published standards
for the appearance of Windows applications?) as well
as the extent to which it complies with accepted
guidelines and recommendations on the appearance
and behavior of user interfaces (e.g., Shneiderman’s
work [17])

Relationship To other Tools: In addition to criteria
for evaluating tools in isolation, we are developing
criteria for evaluating the way in which tools are
related to each other. The collaborative use of tools
may have synergistic or antagonistic effects on the
visibility that assurance engineers and developers have
into the quality of the system and the efficiency and
effectiveness of assurance activities. For example, the

2 This attribute of the tool vendor can influence the stability
and long-term availability of the tool, although precise
relationships are not known at this time.

combined use of a problem tracking system, a version
control system, and a source code structural analyzer
can be used as input to an analysis that will predict the
number of defects that have been inserted into the
source code for individual functions or methods within
a software system [18].

6.2 A specification for the functionality,
behavior, and structure of the tool
evaluation framework.

Putting the evaluation framework into practice
requires specification for a framework enabling
assurance tool users at JPL and other NASA centers to
collaborate in the evaluation and selection of assurance
tools for specific projects or identified institutional
needs. The specification includes descriptions of the
following:

(i) The information to be managed by the framework,
including descriptions of individual tools, tool
evaluation results, and descriptions of assurance tool
needs that are claimed to be unmet by currently
available tools.

(ii) A comprehensive set of quantitative tool metrics
useful for cost-benefit and tool trade-off evaluations
comparing tools and manual approaches within the
assurance process. Some example metrics include:
1) Scalability ratio = {max amount handleable with

tool / max amount handleable manually}. The
amount of information that can be handled
manually can be estimated by analyzing
workproducts produced by the SA staff over a
number of years over multiple projects.

2) Assurance productivity efficiency = {average
amount assured per function point with tool /
average amount assured per function point
manual}

3) Accuracy ratio = {average number errors with tool
/ average number error manual}

4) Average accuracy = {average errors with tool}
5) Accuracy variance = {variance of errors with tool}
6) Coverage fraction [0-1] = {amount tool covers /

total amount}
7) In-processes efficiency with respect to COCOMO

schedule factors (SF) and effort multipliers (EM)
= {COCOMO estimate with tool(s) / COCOMO
effort without tool(s)}

8) Tool efficiency with respect to manual = {effort
with tool / effort manual}

9) Integrability coefficient [0-1] = {fraction of output
compatible with assurance process}

(iii) Methods by which users interact with the
framework and each other to share and analyze

information.

(iv) Analyses that users can request be performed by
the framework. These include techniques such as
traditional statistical analysis (e.g., trending) for

structured data, as well as advanced techniques such as
data mining, natural language processing, and

unsupervised learning (for discovering patterns) in
unstructured data such as natural language text.

6.3 Tool Evaluation at JPL

The tool evaluation criteria and evaluation
framework described above are currently being
developed as part of on-going work at JPL to improve
the use of tools in the JPL Software Assurance
organization as well as other assurance organizations

within NASA. As mentioned in Section 1, the
underutilization of tools for assurance support is
partially associated with perceived high overhead in
identifying and evaluating potentially useful tools, little
understanding on the part of potential users of how

these tools are related to each other, and how they are
most effectively used together within a given assurance
effort. The goal of this work is to create a curated tool
evaluation framework that functions as an accurate and
effective information exchange between the assurance
communities at the various NASA centers. Work to
date has focused on:

• Working with assurance personnel to identify
the types of activities they perform.	

• Developing a list of candidate tools that might
support each of the different types of
assurance activities.	

• Designing a survey that can be used to
evaluate the applicability of tools to different
assurance areas.	

• For each candidate tool, assessing its utility
for each of the assurance areas that have been
defined.	

Figure 4 shows an initial evaluation of each
candidate tool’s utility for each assurance area. Only
the extremities of the 5-point scale mentioned in
Section 5 appear on this plot. A value of 1 indicates

Figure 4 - Evaluations of Tool Applicability to Assurance Areas

“provides explicit support”, while -1 indicates
“inconsistent with/incompatible or contraindicated.”
The inner 3 values of the scale have been collapsed to
“0.” This evaluation appears to show that an
individual tool is appropriate to only a small number of
assurance activity types, meaning it may be important
for assurance staff to know how different tools work
together if they are interested in using tool support for
more than a small number of the tasks they perform.
Further work with members of the wider NASA
assurance community will provide additional
information.

It is important to note that these values cannot be
compared with each other except by ordering; it is
meaningless to analyze their ratios or the distance
between their absolute values.

Evaluations of the tools were collected from a
handful of software assurance researchers within
NASA and will contribute to those evaluations shown
in Figure 2. Analysis of the data collected will be done
formally using hypothesis testing to determine whether
a specific tool supports an each assurance area. For
example, accepting the hypothesis “tool x received
mostly evaluations of ‘provides explicit support’ for
assurance area y” would reveal strong support for the
assurance area. In order to perform the tests, sufficient
data is needed; with 5 categories to evaluate the tool, at
least 5 evaluations are needed, but 7 or 8 will provide
more confidence. More informally, analysis can be
done by looking at the distribution of the evaluations
for each tool and assurance area. The reliability of the
conclusions drawn from analyzing the evaluations will
depend on the amount of data that is collected.

The next steps in this work include:
• Making the survey available to members of

the wider NASA assurance communities, and
working with members of these communities
to elicit information from them.	

• Maintaining an affiliated curated repository of
information on each candidate tool (e.g., a set
of wiki pages) that will be available to
members of the NASA assurance community.
Community members will be able to retrieve
information about a particular tool, and will
also be able to contribute to on-going
discussions about the value of the tool for
specific assurance activities. Our plan is that
the curator of the repository will work to keep
the information in the repository current, and
will also moderate the discussions to ensure
that as little extraneous information is
introduced into the repository as possible. 	

Although this work does not address all of the
issues related to the underutilization of tools (e.g., time
required to learn a tool), it does address some of the

major issues identified by SA personnel (e.g, lack of
information on what tools are available, what
assurance areas they support, and how they interact).
Our hope is that the repository will make it easier for
SA personnel to make more effective use of tools,
thereby increasing the value they add to the projects
they support.

Acknowledgement

The work described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology. The research was sponsored by the
National Aeronautics and Space Administration’s
Office of Safety and Mission Assurance Software
Assurance Research Program. This task is managed
locally by JPL’s Assurance Technology Program
Office.

References

[1] NASA’s Office of Safety and Mission Assurance

Software Assurance Research Program, Software
Assurance Symposium (SAS), Sep 2009,
http://www.nasa.gov/centers/ivv/pdf/386081main_SAS
2009 schedules 090911.pdf, viewed June 17, 2012.

[2] National Aeronautics and Space Administration,
"Software Assurance Standard," NASA-Std-8739.8
w/Change 1, July, 2004, p. 8.

[3] Committee on National Security Systems, "National
Information Assurance (IA) Glossary," CNSS
Instruction No. 4009, April 2010, p. 69.

[4] B. W. Boehm, "Software Engineering Economics,"
Prentice-Hall, 1981

[5] V. Basili, L. Briand, S. Condon, Yong-Mi Kim, W. L.
Melo, and J. D. Valen, "Understanding and Predicting
the Process of Software Maintenance Releases,"
proceedings of 18th International Conference on
Software Engineering, Berlin, Mar 1996, pp. 464-474.

[6] R. E. Park, W. B. Goethert, and W. A. Florac, "Goal-
Driven Software Measurement—A Guidebook,"
Software Engineering Institute, CMU/SEI-96-HB-002,
Aug. 1996.

[7] "The Economic Impacts of Inadequate Infrastructure for
Software Testing," NIST, RTI Project 7007.011.

[8] R. Lutz, C. Mikulski, "Operational Anomalies as a
Cause of Safety-Critical Requirements Evolution," The
Journal of Systems and Software, vol. 65:2, Feb. 2003,
pp. 155-61.

[9] R. Lutz, C. Mikulski, "Requirements Discovery during
the Testing of Safety-Critical Software," proceedings of
25th Int'l Conf on Software Engineering, Portland, OR,
2003, pp. 578-585.

[10] J. Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook, S.
Vadlamudi, A. April, “Requirements Tracing On target

(RETRO): Improving Software Maintenance through
Traceability Recovery,” Innovations in Systems and
Software Engineering: A NASA Journal (ISSE) 3(3):
193-202 (2007).

[11] N. Leveson, Safeware System Safety And Computers,
Addison-Wesley, 1995.

[12] B. W. Boehm, “Software risk management: Principles
and practice”. IEEE Software, 8(1): 32-41.

[13] D. Carney, E. Morris, and P. Place, “Identifying
Commercial Off-the-Shelf (COTS) Product Risks: The
COTS Usage Risk Evaluation”, TECHNICAL
REPORT. CMU/SEI- 2003-TR- 023. September 2003.

[14] “Predictor Models in Software Engineering (Promise)
Software Engineering Repository.”
http://promise.site.uottawa.ca/SERepository

[15] J. H. Hayes, A. Dekhtyar, S. Sundaram, S. Howard,
“Helping Analysts Trace Requirements: An Objective

Look,” in Proc. of IEEE International Conference on
Requirements Engineering, Sep. 2004, pp. 249-261.

[16] The Eclipse Foundation, “Eclipse-The Eclipse
Foundation open source community website,”
http://www.eclipse.org/, viewed June 18, 2012.

[17] B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs,
“Designing the User Interface: Strategies for Effective
Human-Computer Interaction (5th Edition),” Addison
Wesley, 2009.

[18] A. Nikora, J. Munson, "Building High-Quality Software
Fault Predictors", Journal of Software Practice and
Experience, 2006, vol 36, no. 9, May, 2006, pp. 949-
969, doi:10.1002/spe.737.

