

Real-time Accurate Surface Reconstruction Pipeline for Vision Guided
Planetary Exploration Using Unmanned Ground and Aerial Vehicles

Summer 2012 internship - Minority Student Programs
Jet Propulsion Laboratory, California Institute of Technology

Jenkins Pre-doctoral Fellowship Project
Final Report

Student: EDUARDO DE BRITO ALMEIDA

Dates: June 11, 2012 – August 17, 2012 (10 weeks)

NASA Center: Jet Propulsion Laboratory, California Institute of Technology.
Section: Mobility and Robotics, Section 347

Group: Computer Vision for Aerial Applications
Mentor: Curtis W. Padgett
Point of Contact: Jenny Tieu (jenny.tieu@jpl.nasa.gov)

Student Programs:
Jenkins Pre-doctoral Fellowship Project (JPFP) - Cohort 11

Minority Student Programs – Cluster 1
Fellow Graduate Institution: Brown University

Degree Pursued: Ph.D.

Academic Advisor: David B. Cooper
Major: Electrical Engineering

 Eduardo B. Almeida Mentor Approval:
 Eduardo_Almeida@brown.edu

 August 2012 __
 Curtis W. Padgett Date

mailto:Eduardo_Almeida@brown.edu

Abstract
This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California

Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The
system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a
camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are
typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as
robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The
processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge
being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a
difficult task due to many technical reasons.

1 Introduction
In order to explore the solar system, scientists currently rely on robots to travel to distant planets to collect

scientific data. NASA has proven that the technology exists to build very sophisticated robots and successfully send
them to remote locations, e.g. the Mars Science Laboratory (MSL) mission which landed the Curiosity rover on Mars.
Curiosity’s successful entry, descent and landing on Mars were based on a new ambitious completely autonomous
approach for precise landing which lasted only 7 minutes but took several years of design and implementation to make it
reliable. Due to communications delay of many minutes, any attempt to control the rover descent from Earth would not
be feasible. After reaching their destination safely, such unmanned vehicles can benefit from vision guided autonomous
navigation to traverse the terrain avoiding slow manual control. The problem of current autonomous navigation systems
for planetary exploration is the fact that they are not yet fully reliable to control a vehicle, so most of the navigation is
still manual for safety reasons. The goal of this research project is to improve the state-of-the-art of vision guided
autonomous navigation systems software such that it can be used to safely guide and track even flying robots.

The set up for this project involves an unmanned moving vehicle which observes its surroundings through the
lens of a camera. Structure from motion techniques can be used to combine overlapping information from the images
and reconstruct the 3-d geometry of the scene including the moving camera locations. This motivates several NASA
applications: terrain relative navigation, precise landing, automatic hazard avoidance technology, visualization and
mapping. The main objectives are to estimate surfaces and camera locations at high accuracies and speed. This capability
of accurate camera relative motion would allow real-time tracking of the position of an aircraft in occasions when its
primary navigation system fails to provide geolocation as it flies. These problems may commonly happen due to
hardware failure or communication loss with a mothership. In order for a vision guided system to replace the primary
navigation system for a long period, high accuracy is necessary since drift errors will eventually accumulate. For ground
rovers, besides the tracking capability, a reliable and complete terrain surface model will help it avoiding obstacles and
doing traversability studies for path planning.

2 Real-time Camera Pose Estimation
Camera location and orientation estimation is the first required pre-processing step to the proposed method to

allow incoming images to be registered, matched and analyzed together. VisualSFM multicore-accelerated application [1]
which performs camera estimation using multi-core feature detection, matching and bundle adjustment optimization was
selected for estimation of the autonomous vehicle camera pose. The fellow learned how to use the software package and
tested several of its features. In addition, code was written to use the software bundle adjustment module with our own
features. The purpose was to compare the quality of the results.

2.1 Details of the compared feature algorithms

VisualSFM operates through a graphical user interface (GUI) or the command line (CML). The GUI has more
commands than the documented CML commands, but the CML has all the necessary tools. Usage details can be found
in the online documentation website [2]. It detects SIFT (Scale-invariant feature transform) features on image pairs, match

them over all pairs, or pairs in a selected range1, and refines camera estimation using bundle adjustment. All operations
are performed fast in parallel computations on a general purpose Graphics Processing Unit (GPU). VisualSFM can also
import features and/or matches from other algorithms.

We compared with our own Shi-Tomasi corner detector and normalized cross-correlation feature tracker
(NCCFT), a command line tool for feature detection and matching. We built it from source code and implemented
scripts to automatically run it and convert file formats from NCCFT output to VisualSFM input. For comparison, very
large aerial images of 10,000 by 10,000 pixels were used to test the applications to their limits. This may generate a large
number of features. Some important notes:

1. To be able to read more than 8192 feature matches per image, on VisualSFM v0.5.18 GUI, navigate to
"ToolsEnable GPUSet maximum SIFT" or set it permanently by changing the parameter
“param_gpu_match_fmax” to the desired value on the program installation folder configuration file nv.ini. A
segmentation fault runtime error indicates attempt to read more matches than this parameter.

2. To import our own features they need to be written into the VisualSFM binary feature file format with the
same name and folder as its associated image with extension “.sift” (the features are not necessarily SIFT
though). To import features in the GUI, use "SfMPairwise MatchingImport Feature Matches". To
import them in the CML, use the “+import” option.

3. To prevent image downsampling when reading large images of size e.g. 10000 by 10000, the “-nomc”
parameter (which stands for no memory cap) must be used in the GUI at "ToolsEnable GPUCustomized
Param".

Table I provides running times, feature counts, match counts and error measures for the two feature detection
implementations both running at full image resolution (10,000 by 10,000). They run in different devices, VisualSFM
detection module, SiftGPU, runs in NVIDIA GTS 250 GPU (typically the faster device) and our NCCFT in Intel i7-
2720QM at 2.20GHz CPU (central processing unit).

Table I: Camera pose estimation comparison using SiftGPU and NCCFT in 100 megapixel images.
Image size NCCFT tracker VisualSFM SiftGPU
Average number of features 9131/image 9800/image
Average feature detection time 3.01s/image 4.50s/image
Average number of matches 2008/pair * 4500/pair
Average feature matching time 14.5s/pair 0.51s/pair
Mean reprojection error 0.53 pixels 1.24 pixels
Median reprojection error 0.31 pixels 1.12 pixels
* These features were detected using the estimated homography to reduce the search radius to 30.

There is a clear trade-off between speed and accuracy of these implementations. Desired results for our
application are marked in italic red font on Table I. As our application needs both speed and accuracy, as describe in the
Introduction Section, the summer experience included converting the CPU implementation of NCCFT to a GPU, a
challenging task described in following sections.

Regarding the bundle adjustment module performance not included in Table I, if the focal length is not
provided, it will be automatically set by the application to 1.2×max(image height, image width), and the optimization will
take roughly 60s to converge to a bad solution very often. However, success rates increase drastically to essentially 100%
if correct focal length parameter is provided for cameras in the dataset. This reduces the bundle adjustment time of 18
fully matched 10,000×10,000 images, i.e. �182 � = 153 pairs, to 8s. Figure 1 display estimated cameras results for a scene
observed from above by an aircraft flying at 5km altitude in a circular trajectory:

1 Used for video sequences, where matching consecutive frames in a certain sliding window is reasonable.

Figure 1: Succesful camera pose estimation visualization. Left: side view of the Dayton scene with cameras represented at
the top pointing down at the mainly planar ground surface. Right: Nadir view of the scene. The dark points at the surface are
approximatelly 19000 sparse 3-d points reconstructed from matched feature triangulation used in the bundle adjustment refinement.

3 Extension of NCC to GPU
Volumetric scene reconstruction is inherently a computation intensive task, but many computations are

independent and can be computed in parallel for increased speed. This section provides information on how the current
fixed grid online algorithm is being extended to a GPU implementation with octree volumetric structure and how we are
dealing with some problems originated from this extension.

A GPU has limited resources for data storage, e.g. the latest devices have 1GB to 3GB or internal global
memory (as of 2012), which is limited compared to CPUs which may have approximately 100GB of RAM. In addition,
the amount of private memory (defined in Sec. 3.2) each one of the hundreds of processing cores in a GPU has is limited
to a few kilobytes, similar to a CPU cache. The fastest computations for a GPU core are the ones where data fit into
private memory. Therefore, our implementation also requires an octree volumetric structure to mitigate the amount of
data storage and processing. In order to save some effort, we proposed to use an open source library called BOXM2
(part of VXL [3] and described in [4]) which provides GPU compatible octree based modeling. This library is very
extensive and we learned to use it for octree ray casting, memory management, I/O management and division of the
scene into “blocks” that are loaded from the hard drive upon request, as large scenes typically do not fit entirely into GPU
memory. BOXM2 blocks are defined as a fixed grid of shallow octrees of maximum depth 4 (the root node that
subdivides up to 3 times), a model that is better than a single octree for technical implementation reasons. It is
implemented in C++ and OpenCL.

We learned how to use OpenCL framework, the BOXM2 library and the NVIDIA GPU architecture to
translate the slowest but parallelizable piece of our proposed approach algorithm implementation to GPU. The speed
bottleneck of our computation is the numerous normalized cross correlation (NCC) computations for each ray
associated with each pixel in an image that are used to help defining surface locations, and also used at the feature
matching module of pose estimation (see Sec. 2.1). GPU accelerated NCC is not provided in BOXM2. The motivation
to implement it included:

• Reaching the computation speed goal for surface extraction.
• Speeding up the feature matching for camera pose estimation (see Table I).

3.1 OpenCL Basics

OpenCL is a framework for writing programs that execute across heterogeneous platforms such as CPUs and
GPUs on multiple operating systems. The OpenCL parallel computing is provided by functions called kernels. Kernels
are written in C99, a revision of the standard for the C programming language published in 1999, and they are designed
to split data among several working processors which simultaneously process their piece of the data and return results to

the host, the provider of the data (CPU). Developers with advanced C/C++ programing skills are not expected to have
any proficiency in OpenCL. Since learning this framework was crucial to this project, its main functions are summarized:

• clGetPlatformIDs: identifies platforms installed in the system, which can currently be NVIDIA and/or AMD
GPU platforms or multi-core CPU platforms.

• clGetDeviceIDs: identifies accessible devices of a given platform, e.g. a single computer may have 3 graphics
cards of the NVIDIA platform, or 1 from NVIDIA and 1 from AMD. These devices can be all detected and
indexed by this function.

• clCreateContext: a context is a communication interface between the host machine and given devices for
managing objects such as memory, program and kernel objects.

• clCreateProgramWithSource: create a OpenCL kernel program based on C99 source code given a
context. All the code is passed loaded into one single string. It is possible to separate the code into different files by
appending them into the string, while ensuring all dependencies of the main kernel function are forward declared.

• clBuildProgram: compiles the program (collection of kernels) and builds the executable for the device in
context.

• clCreateKernel: creates a kernel, a function which will run simultaneously in multiple cores of the device.
Many kernels can be defined in the source code indicated as functions with the keyword __kernel. The chosen
kernel function for the device executable must be specified as an input.

• clCreateCommandQueue: creates a command queue to a target device in context before the application can
dispatch the kernel.

• clCreateBuffer: creates a buffer in the device memory, which is initialized using an array on host memory.
Buffers allow data transfers between the device’s memory and the host’s memory, since the device cannot access the
host memory directly and vice versa.

• clSetKernelArg: set the inputs of a kernel function using the created buffers.
• clEnqueueNDRangeKernel: dispatch the kernel in the queue and run the application.
• clEnqueueReadBuffer: Reads processed data back from the device memory into the host’s memory.
• clRelease*: functions to deallocate resources. Examples: clReleaseKernel, clReleaseMemObject,

clReleaseCommandQueue, clReleaseProgram and clReleaseContext.

3.2 Nvidia Architecture

Nvidia GPU graphics cards devices are divided into compute units (a.k.a. multiprocessors). Each compute unit can
be seen as a smaller independent GPU with its own registers and local memory (a.k.a. shared memory). Each compute unit
has cores (a.k.a. scalar processor) which run 4 threads (a.k.a. work-item) each, for a total of 32 threads per compute unit in the
Tesla architecture, which has 8 cores per compute unit. Newer models have the Fermi architecture, but our software has
been tested only on Tesla so far. Data is sent from a host computer memory to the GPU through its global memory, which
is large but has high latency. A function that runs on a GPU is called a kernel, and all threads in a compute unit run the
same kernel function. The registers are where threads store their local variables. Registers are shared among all threads
on each compute unit. A Tesla device has 8,192 registers (32-bit) per compute unit. The registers used by a thread define
its private memory, as they have exclusive access to them. To share intermediate computation results, threads must share
values in local memory, which is very fast, but limited to 16 kilobytes per compute unit in Tesla. Output data must be
written back to the device global memory prior to returning to the host.

One of the most important NVIDIA architecture facts is that what NVIDIA calls SIMT (Single Instruction,
Multiple Thread): all threads in the same group execute the same instruction at the same time, as opposed to each thread
running the kernel function in arbitrary order. One can define in OpenCL a compute unit running with a multiple of 32
threads, denoted a warp, even though it only has physically 32 threads (8 cores). At the hardware level, when one warp
stalls on e.g. a slow global memory operation, the compute unit selects another ready warp and switches processing to it.
Note that, physically only one warp can run at a time, and all threads in that active warp are running the same
instruction. This is actually the way one hides the high global memory latency: while one warp waits, others are activated
for processing, so the hardware stays busy. Larger the group of warps, hide more latency. This is the most important
optimization step to keep a high percentage of the hardware busy most of the time, a challenge GPU programmers must

face to get the optimal performance from their devices. Local memory bank conflicts and register latency must also be
avoided. A local memory object is divided into 32 4-byte wide banks. Successive 4-byte words belong to different banks.
A conflict occurs if multiple threads access bytes on the same bank, thus the accesses are executed serially. A local
memory is time is equivalent to 1 instruction, while global memory accesses range from the time of 100-200 instructions.
Registers are just as fast as local memory, except when they were just set, which takes the time of 6 instructions to be
ready, therefore must be set as soon as possible and not just before being used. A last important consideration is the
correct way global memory must be accessed by several threads in parallel: they must access adjacent segments of
memory in the same order as their thread ids and the segment of 32 words must be aligned with the object memory, i.e.
starting exactly at memory addresses multiple of 32 words, otherwise the access for the 32 threads will be serialized (32
memory access, i.e. equivalent of the time of 3200-6400 instructions) instead of one parallel access (32 words in one
coalesced memory access). Thus, uncoalesced access is very slow and must be avoided.

In the same way multiple warps can run concurrently in the cores of a single compute unit, a device can also
run many work-groups in its compute units (16 in Tesla). Work-groups are sets of multiple warps running a kernel in a
compute unit. A GPU device can run as many simultaneous work-groups as the number of compute units. The
hardware schedules work-groups to run in different compute units. If one work-group is waiting, the unit works on
another work-group. As a unit finish running a work-group it may start another. Note that, work-groups processing is
completely parallel, independent and not synchronized, as opposed to warps within a work-group which run the same
instruction (SIMT) and share data through local memory. Different work-groups do not share data.

3.3 GPU Implementation Overview

We implemented normalized cross correlation (NCC) in a GPU by loading a one-template wide image strip
into local memory. Sums are pre-computed sums as a template window moves from left to right for efficient processing.
Jobs are distributed among several 8 warps per work-group. After a strip is processed, a new row is loaded from global
memory to replace the top row and the same code repeats, now one row down. For technical purposes, we do this on a
fixed template of size 16×16. Smaller templates of size 𝑁 × 𝑀 where 𝑁,𝑀 ≤ 16 can be used as additional rows and
columns are zero padded and the code takes all necessary modifications to handle this. Thus, we can compute parallel
NCC with a template size up to 16×16 and with one coalesced pass through the data.

4 Results and Discussion

Figure 2: Reconstruction algorithm output mesh surfaces estimated from aerial views of an urban scene using our
proposed algorithm. The mesh facets are painted with texture from the dataset images, shown on the left. Top: The Rhode Island
state house building showing successful renderings of the scene from an unobserved ground viewpoint and correct estimation of the
building flat and curved surfaces including one flag. Bottom: Reconstruction result on a scene containing a few buildings, streets and
trees correctly recovered. The accuracy of the surface models reflects the accuracy of the camera pose estimation.

We currently have a robust volumetric surface reconstruction algorithm using multiple view stereo and NCC in
a update voting scheme to classify voxels in a regular grid as inside or outside an unknown surface, and use the votes to
define a graphical model (a Markov Random Field) solved using a global minimization technique called graph cuts to
find a solution of highest probability [5]. The solution labels voxels as 𝐿 = {inside, outside} and it then becomes
straightforward to extract a closed fully connected water-tight mesh free of self-intersections as the iso-surface boundary
between the two label sets. More details about this volumetric method were provided in previous reports. Some results
are displayed below on 2 aerial datasets. All images were taken from above and our current reconstructed 3-d model
accuracy can be evaluated visually for these datasets.

In Figure 2, results are shown from the current implementation of the proposed surface estimation approach.
The reconstruction accuracy depends on the number of images used, the resolution of the volumetric voxel grid and the
accuracy of camera calibration. For the state house, 23 images were used (5 reference viewpoints processed with 3 to 4
stereo views each), and the voxel resolution was 140×85×105 (length×width×height). For the other dataset, a total of 30
images were used (7 reference views processed with 4 shared stereo views each) at voxel resolution 93×140×44. Since
the reconstruction looks natural, preserving its aspect ratio and angles, and is not twisted or stretched in any particular
direction, especially along the viewing direction, looking down from above, an indication exists that the camera pose
estimation and calibration must be accurate in accordance with the surface accuracy even though we are not presenting a
quantitative evaluation.

5 Conclusion and Future Work
A system was presented for vision guided autonomous vehicle estimation with focus on aerial robots. The

system performs real-time camera pose estimation and refinement (bundle adjustment) and extracts surface from the
imagery as the robot moves based on a volumetric voxel grid model. Camera locations are used as an estimate of the
robot location, while reliable and complete 3-d surfaces are input data for path planning and hazard avoidance methods.
The objectives for the project are being reached for the goals of accuracy and speed performance. As future work, we
must compare the speed gains of our GPU implementation combined with the improved octree volumetric model to
confirm if real-time performance can be reached with the desired pose accuracy and surface resolution.

6 Acknowledgments
The author acknowledges his colleagues, mentors, advisor and friends for the great support, including JPL

Mobility and Robotics Section, JPL Education Office, Brown University School of Engineering and the NASA Jenkins
Pre-doctoral Fellowship Project. This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by the Harriett G. Jenkins Pre-doctoral Fellowship Program, Minority Student
Programs and the National Aeronautics and Space Administration.

7 References
 [1] C. Wu, S. Agarwal, B. Curless, and S.M. Seitz, “Multicore Bundle Adjustment”. In CVPR 2011.

 [2] VisualSFM : A Visual Structure from Motion System. [Online] http://www.cs.washington.edu/homes/ccwu/vsfm/doc.html.

 [3] VXL: C++ Libraries for Computer Vision Research and Implementation. [Online] vxl.sourceforge.net..

 [4] A. Miller, V. Jain and J. Mundy. “Real-time rendering and dynamic updating of 3-d volumetric data”. ASPLOS’01.

 [5] G. Vogiatzis, C.H. Esteban, P. H. Torr, and R. Cipolla. “Multi-view stereo via volumetric graph-cuts and occlusion robust
photo-consistency”. In PAMI, 2007.

	1 Introduction
	2 Real-time Camera Pose Estimation
	2.1 Details of the compared feature algorithms

	3 Extension of NCC to GPU
	3.1 OpenCL Basics
	3.2 Nvidia Architecture
	3.3 GPU Implementation Overview

	4 Results and Discussion
	5 Conclusion and Future Work
	6 Acknowledgments
	7 References

