Improving Flight Software Module Validation Efforts:
A Modular, Extendable Testbed Software Framework

R. Connor Lange
Cal Poly Computer Science Student
rclange@calpoly. edu
Mentors: Tom Fouser, Cindy Oda

August 25, 2012

Abstract

Ever since Explorer-1, the United States’ first Earth satellite, was developed
and launched in 1958, JPL has developed many more spacecraft, including landers
and orbiters. While these spacecraft vary greatly in their missions, capabilities, and
destination, they all have something in common. All of the components of these
spacecraft had to be comprehensively tested. While thorough testing is important
to mitigate risk, it is also a very expensive and time consuming process. Thank-
fully, since virtually all of the software testing procedures for SMAP are computer
controlled, these procedures can be automated. Most people testing SMAP flight
software (FSW) would only need to write tests that exercise specific requirements
and then check the filtered results to verify everything occurred as planned. This
gives developers the ability to automatically launch tests on the test bed, distill the
resulting logs into only the important information, generate validation documenta-
tion, and then deliver the documentation to management. With many of the steps
in FSW testing automated, developers can use their limited time more effectively
and can validate SMAP FSW modules quicker and test them more rigorously. As
a result of the various benefits of automating much of the testing process, manage-
ment is considering this automated tools use in future FSW validation efforts.

1 Introduction

The Soil Moisture, Active and Passive (SMAP) project aims to gather data about the
freeze /thaw state and soil moisture levels of the Earth’s surface [4]. The flight software
internal testing (FIT) team’s role in the project is to develop and test flight software.
The amount of testing that occurs to validate a portion of the flight software is a non-
trivial, multi-faceted process which includes the use of automated scripts and other testing
tools. The automated tools used for development are often intertwined with the tools
used for testing. Each individual tool is typically combined with various other tools
and wrapped into a single executable tool. These combined tools provide high level
functionality for specific situations, such as testing the current build of flight software
(which includes building the project, checking the code for problems such as unbounded
loops, and running test cases). These types of high level tools provide infrastructure to
software developers and testers, which ultimately makes their jobs easier.

1

When any sufficiently large software development project takes place, there is com-
plexity in the software development infrastructure. Various people are building and test-
ing their code and many directories exist for storing certain documentation. As the
project grows so does the number of previous builds and the archive of documentation.
In order to keep everything straight, software infrastructure tools can be deployed to
consolidate summary data for managers and automate testing processes. These tools
ultimately save the developers time and make the development team more efficient.

2 Background

When flight software (FSW) is being developed, it is also being tested to ensure that the
code meets the requirements of the project. To facilitate testing, the SMAP project has
testbeds in two different buildings (Blg. 198 and Blg. 156) that developers can reserve time
on and access remotely. However, because not everyone can run tests on the testbed at
once, software that simulates the avionics is often used instead. On the SMAP project,
the simulation software is called the Workstation Test Set (WSTS). WSTS is vxSim-
based and simulates the hardware in the testbed. Anything that is supposed to occur
in hardware will run slower in WSTS, but since WSTS is running on computer with a
much faster processor than SMAP’s RAD750, the software executes faster than in the
testbed[3]. Because WSTS doesn’t rely on the spacecraft hardware, every developer can
run WSTS on their own machine, reducing contention for testbed time and ultimately
making the developers more efficient.

Because it can be spawned on local machines and doesn’t risk damaging the hardware,
WSTS has been an ideal platform for automated testing. WSTS has enabled automatic
overnight regression tests and other testing suites to be developed and deployed as part of
the SMAP FSW development effort. While having an automated testing suite is useful to
developers, the WST'S regression suite operates at a lower fidelity and at a slower speed
than a regression suite would operate on the testbed. Further, the WSTS regression suite
results come from a simulator, which are only as accurate as the simulator itself. WST'S
is not sufficient to ensure that the software will function on the flight hardware because
it is very likely that there are small differences with what WSTS is simulating and how
the hardware will actually behave. Running flight software in the testbed is also the only
way to execute the code in real-time.

Unfortunately, a regression suite that operates on the testbed wasn’t available and
needed to be developed. Due to the existing WST'S regression script’s tight coupling with
other libaries, lack of modularity, and the team’s desire for a flexible system, a completely
new regression script had to be developed from scratch. Although the regression code
needed to be written from scratch, many existing processes such as Chill and CuteCom
could be leveraged to send commands and configure the spacecraft in the testbed. Addi-
tionally, existing scripts and wrappers could be utilized to send SSE and flight hardware
(FHW) commands messing with the low-level data streams on the testbed equipment via
sockets could be avoided.

3 System Detalils

To maximize system flexibility and code re-use, the Testbed Regression Suite was devel-
oped as a modular system. With the constantly changing testing needs of the FIT team,

creating an easily extensible system was a top priority. By dividing the functionality of
the Testbed Regression Suite into multiple modules, the system can be easily reconfigured
to support different testing efforts. Because of the loose coupling between the modules,
it is also possible for a subset of the modules to be used for applications very different
from testing; any future project that requires an API for Chill or CuteCom can use the
modules to easily develop a new system.

There are several modules provided as part of the Testbed Regression Suite and each
represents a part of the regression suite. Although the modules are isolated from one
another, modules are organized in a hierarchy where low-level functionality provided by
modules such as SSE and CuteCom are ultimately utilized by high-level modules such
as the Test Controller or Testbed198. A diagram of the system architecture is shown in

Figure 1.
[TestController j

TestBed198

Figure 1: The Regression Suite System Architecture

3.1 CuteCom

CuteCom [2] is an open-source serial device terminal program that is currently used to
talk to the hardware in the 198 SMAP testbed. CuteCom is used to load, initialize,
and run flight software. Since flight software needs to be restarted for each test in the
regression suite and CuteCom has a GUI frontend, the CuteCom module makes use of
sendcc to send individual CuteCom commands in a headless environment. In addition
to sending serial commands, sendcc provides the output of the command executed. The
returned output can then be analyzed to determine if the command succeeded. For ex-
ample, when sending the ”enet_init” command the expected output in the 198 Testbed is:

Loading Inc...initString=null
Loading Inc...initString=1:-1:-1:-1:0x0:0x0:0x3100
unit 1 I0OBase 0xc0440300 Ivec Oxlc Ilevel 0x0 Offset O

By verifying that the output of commands matches the expected output, the flight
software will always be in the correct state and any test failures won’t result from the
software loading procedure. If any line in the output stream doesn’t match one of the
expected conditions, the system will detect that FSW failed to initialize and take correc-
tive action. By default, the FSW initialization sequence will be sent one more time, with
the system terminating on an error.

3.2 SSE

Just as the CuteCom module provides an inteface for CuteCom to interact with flight
software, the Simulation Support Equipment (SSE) module provides an interface to the
SSE. This interface consists entirely of turning on and off the SSE. The SSE provides
extra feedback to developers and facilitates the testing of flight software. The SSE,
like flight software, has a specific turn on procedure that must be followed to avoid
problems. However, the SSE turn on procedure has a slight chance of causing damage
to the flight hardware if the turn on/off procedure is executed incorrectly. Although
an incorrectly executed turn on/off procedure is unlikely to damage the hardware, it
will place the system in an unknown state which cause problems when determining the
expected results of the system. However unlikely it is that the SSE procedures could
damage the hardware, the benefit of having a completely automated testbed versus an
almost completely automated testbed (a difference in execution time on the order of
seconds) wasn’t worth the risk of damaging extremely expensive flight hardware. It is
worth noting that the dangers of the SSE module are not a result of the SSE module
itself, but rather the entire regression suite crashing during execution. As currently
implemented, a regression suite crash would not send the SSE shutdown commands, thus
leaving the SSE in an unknown, and potentially dangerous state.

3.3 Chill

In order to get feedback from the spacecraft hardware in the testbed, a module needed
to be developed that encapsulted all of the uplink and downlink functionality between
the spacecraft and the ground systems. Thankfully, this module (named Chill) was pre-
existing so only a wrapper needed to be developed. Release 2 (R2) Chill consists of two
programs, chill_down and chill_up (for downlink and uplink respectively). When these
two programs are run interactively and launched via chill, their Graphical User Interfaces
(GUIs) are combined into an uplink/downlink window and numerous windows appear to
allow the user to configure the session and send flight software commands. While GUIs
are excellent for human users, they aren’t very useful to automated scripts. Therefore,
the processes are run headless so they don’t need to be configured and nothing needs to
be clicked.

Since Chill utilizes different ports, hostnames, and SSE information depending on the
testbed that it is running in, the Chill module is initialized with a dictionary containing
all the relevant configuration information to maximize flexibility. If any values in the
dictionary aren’t specified, they are set to the defaults of a particular venue. These
defaults are sometimes the correct values, but often default to incorrect values. For this
reason, each venue should provide a complete dictionary when initializing Chill.

3.4 TestVenue

Unlike all other parts of the system, the TestVenue class is merely an interface (via
abstract methods) that should be implemented by any test venue such as WSTS or the
198 Testbed. The methods that must be overriden by subclasses are:

e start - one-time initialization code

e preparelForTest - multiple initialization code (usually used to ensure separate logs)

runTest - the only non-abstract method, runs fitfunc by default
e finishTest - shuts down anything spawned by the prepareForTest method

e stop - one-time (final) shutdown code

configure - configures the testbed (setting instance variables; debug state, etc.)

3.5 Testbed198
The Testbed198 class essentially takes the 198 Testbed Turn On/Off Procedure [1] and

automates it using software. Namely, the TestBed198 class overrides all the abstract
methods from the TestVenue class to execute the procedure and run tests on the testbed.
When the the Testbed Regression Suite runs, the testbed’s configure method is called
first to assign port numbers and host names that will be used in the procedure. Once the
Testbed Regression Suite is ready to initialize the testbed, the start method is executed,
synchronizing timers and powering on the testbed. Shortly after start completes, the
testing loop begins. Within this loop, the prepareForTest, runTest, and finishTest meth-
ods are called. Testbed utilities such as the Ground Data System (GDS) are spawned
at the beginning of the loop, used during testing in the runTest phase, and then shut
down during the end of the loop. As configured, this loop executes once per test script.
Specifically, the testing loop encapsulates the following sequence of events:

1. Start CuteCom
2. Start Chill/GDS
Send a hardware sytem reset (HDW_SYSTEM_RESET cmd)

- W

Verify testbed configuration (check boot bank, make sure all commands went through)
5. load, initialize and run FSW

6. execute a regression test

7. Shutdown Chill

8. Shutdown CuteCom

When the final iteration of the loop completes after executing the last test, the stop
method is executed to shutdown the testbed. This method powers off the testbed and
shutdowns the SSE components of the system. Once the final shutdown commands are
executed, and the testbed has been cleaned up for the next user, the Testbed198 class’
role in the Testbed Regression Suite is finished.

5

3.6 Test Controller

The Test Controller class is the top-level module in the Testbed Regression Suite and
is the only part of the system that is specifically designed for a regression test suite.
As the top-level module, the Test Controller is responsible for handling command line
arguments, configuring the regression testing process, and controlling the testbed via its
interface methods. It is also responsible for setting any necessary environment variables
used during the testing process. When the Testbed Regression Suite begins, the Test
Controller first parses the command line arguments, which consist of a build folder and
a test file. The build folder contains everything that is needed to run regression tests,
including a flight software object file and a XML command directory (used for sending
commands in Chill). The test file contains a list of the module to be tested, the host
to run the test on, arguments that should be passed to the test, and a number of other
parameters.

In order to execute regression tests, the Test Controller executes the following proce-
dure:

1. Get the test file name and build directory from the command arguments
2. Parse the test file and consolidate dictionaries representing each test into a list

Initialize the assigned TestVenue subclass and perform the one-time startup

- W

Execute the TestVenue subclass to prepare for test execution

&

Get a test dictionary out of the list and run it via fitfunc
Shutdown the parts of the testbed that are started for each test

Shutdown the testbed

© NS

Optionally, post-process the test session using smappp

Because all testbeds should derive from the TestVenue baseclass, the Test Controller
class is test venue agnostic; no changes must be made to the Test Controller (except
ensuring the desired testbed is set) to execute regression tests at a different venue. This
property makes the Testbed Regression Suite very adaptable because the Test Controller
class isn’t coupled with CuteCom, SSE, or Chill. The biggest benefit of this type of
system design is the significant amount of flexibility it provides. If a unique type of
test venue is developed in the future, the Testbed Regression Suite will work on that
testbed, provided a testbed class is developed. If the tester wants to run something other
than a regression test on the testbed, the Test Controller class can simply be removed
and replaced with a different class that performs the desired tests. Because the Testbed
Regression Suite is so flexible, it can be used on all future testing projects and decrease
the time required to manually bring up the test venue and run tests.

4 Conclusion

Through the completion of this work, the the Testbed Regression Suite contributes both
API wrappers for common testbed operations and a complete regression suite. Both of
these results improve developer efficiency by decreasing the amount of time that needs

to be spent on testing. Additionally, as more non-flight projects move towards a modu-
lar /component architecture, the code developed as part of this project will be increasingly
valuable. In the future, all of the code that is part of the Testbed Regression Suite could
be integrated into a much larger system that, as an example, builds the flight software,
runs a regression test on the build, and performs some type of anaylsis at the end. The
possibilities are truly endless and it is the sincere hope of the author that the Testbed
Regression Suite is utilized by future developers and contributes to the automation efforts

at JPL.

5 Future Work

Although the Testbed Regression Suite is mostly complete, there are a lot of aspects of the
system that can be improved. First, the various outputs and logs can be consolidated into
one area so the results of the Testbed Regression Suite are much easier to view. The logs
and output that would need to be consolidated result from CuteCom, chill_down, chill_up,
the Testbed Regression Suite itself, and various other places. Second, the error checking
the system does to ensure everything is okay could be more robust. Each part of the
system (Chill, CuteCom, etc.) is so complex that there simply wasn’t time to implement
extensive error checking. Lastly, the timing of the testbed classes can be improved. Many
of the wait times after commands were determined by varying the timing values until a
task worked consistently. Since these wait times are fixed, they have the potential to
add a lot of overhead to the system. In addition to the future improvements previously
mentioned, there is always room to improve a system or make it even more flexible.

6 Acknowledgements

None of this work would have been possible without funding from NASA/JPL, or the
guidance provided by my mentors Tom Fouser and Cindy Oda. This work was completed
as part of the JPL Summer Internship Program.

References

[1] MONTANEZ, L. Smap testbed power on/off procedure. JPL Document 72553, 2012.

[2] NEUNDORF, A. Cutecom on sourceforge. http://sourceforge.net/projects/
cutecom/, 2011.

[3] SoHL, G. Wsts-3.1 user’s guide. https://charlie-1ib. jpl.nasa.gov/docushare/
dsweb/Get/Document-1466162/WSTS-3.1%20Users?20Guide’20.docx, 2012.

[4] YUuEN, K. Smap project webpage. http://smap. jpl.nasa.gov, 2012.
This reseachiwas caniietiout at the Jett PropulisionLabargtoyy California Institute of Tedhndiagyy

andlwas spansoeddy the JPL Sumnee IntennshijpProgram(JPLSID))and the Natiomal
Aeromauicssand SpaecAdministratiian.

tfouser
Typewritten Text
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
and was sponsored by the JPL Summer Internship Program (JPLSIP) and the National
Aeronautics and Space Administration.

