FABRICS IN SPACE ARCHITECTURE

History and examples of textile architecture for advanced space habitats

2012 USC – School of Architecture
“Space Architecture is the theory and practice of designing and building inhabited environments in outer space”

Millenium Charter, Tx USA, 2002

FABRICS IN SPACE ARCHITECTURE
Textile architecture for advance space habitats

CONTENT

1 INTRODUCTION: Space Architecture
2 TEXTILES IN SPACE ARCHITECTURE: History
3 MAPPING WITH FABRICS: NASA HDU Hygiene Module (Master Thesis)
4 LUNAR HABITAT USING FABRICS: First stage design (Master study)
5 CONCLUSION
Mechanikoi, a constructive degree (Eastern Roman Empire):

- They mastered both construction science and technology as well mathematics and astronomy
- Key architects: Isidore of Miletus (H.Sofia), Heron of Alexandria (Robotics)
- *HAGIA SOFIA (Holy Wisdom, Istanbul, 537 A.C.):* Mathematics and science to study the cosmos allowed a better and impressive structural design… (Earthquakes)
FIRST PROJECTS OF SPACE STATIONS

Konstantin Tsiolkovsky, Concepts (1897)

Herman Potočnik Concept, 1929

FABRICS IN SPACE ARCHITECTURE
Textile architecture for advance space habitats

Konstantin Tsiolkovsky, Concepts (1897)
FABRICS IN SPACE ARCHITECTURE
Textile architecture for advanced space habitats
FABRICS IN SPACE ARCHITECTURE: Exterior

Textile architecture for advance space habitats

Images courtesy of NASA
FABRICS IN SPACE ARCHITECTURE: Inflatable
Textile architecture for advanced space habitats
FABRICS IN SPACE ARCHITECTURE

Textile architecture for advanced space habitats

Image courtesy of NASA
FABRICS IN SPACE ARCHITECTURE: **SUIT**

Textile architecture for advanced space habitats
FABRICS IN SPACE ARCHITECTURE
Textile architecture for advanced space habitats

Image courtesy of NASA
Cargo Transfer Bags (CTB):
• Current logistics elements
• Could be used as waterwalls (waste & water treatment)
• Deep Space Mission: 200-500 CTBs
• Made of polymer (high H content)
• Radiation shielding capabilities
• Flexible
FABRICS IN SPACE ARCHITECTURE: DSH Logistics-2-Sgileding

Textile architecture for advance space habitats

HDU Micro-Hab Hygiene Module

Images courtesy of NASA

Façade Tectonics Workshop

Model: Scott Howe, JPL NASA/Clatech

USC School of Architecture - Sep 25th, 2012 - © Raul Polit-Casillas
Number of bags by layer: 18
Separation: 840 mm (33 in)
Angle (with respect to axe): 41°

Alignment of bags: One direction
Drawbacks: Different directions / curvatures
Benefits:
• Supporting points are better distributed
• It uses a fewer or equal number of bags
• % Ae in second layer is lower
• Better resistance against physical impacts
• Areas near airlocks are better covered
COMPONENTS
1. Flexible elements (CTBs)
2. Supporting Surface (Force Net)
3. Discrete Elements (Micro-harpoons)
4. Automatic Tool: CTBs Mapper

Fabric architecture for advance space habitats
FABRICS IN SPACE ARCHITECTURE: CTB Mapper

Textile architecture for advanced space habitats
Mission and launcher

- **Mission Elements**: Launcher system (2 Ariane V ES), habitat module, propulsion unit and moon lander
- **Launch vehicle**: Ariane V up to 21 tons of payload
- **Crew**: 6 astronauts
- **Duration**: 180 days or more
- **Location**: It should be able to adapt to any landing site. It is assumed a sensible flat surface would be chosen.
- **Operations**: Tele-operated from Earth. The system should not require any previous human presence or activity.
- **Logistics**: Fully autonomous but not fully equipped. Consumables and equipment would be shipped later.
- **Analogs**: Both technology and concept should be able to be tested on Earth previously (with gravity present)
- **Technology**: Any system should use a technology with enough TRL.
Reducing mass, volume and energy budgets using fabrics

- **In situ resources Utilization (ISRU):** Using regolith as construction element
- **Radiation protection:** ESA 1992 – shielding of 400 g/cm² recommended during solar flares
 - 2 - 3 meters would suffice, while 4 to 5 meters will protect even during solar flares
- **Volume:** It has to fit in an Ariane V fairing. Adaptable architecture
- **Mass:** Reduce mass budget to the maximum. Increase multipurpose elements
- **Terrain:** Flat or flatten terrain, however the system has to be adaptable
- **Human Factors:** Respect to basic habitability measurement
- **Simulation and testing:** Feasible testing methods should be available
Self deployable habitat for a crew of 6. Fitting within the 4.5 m diameter of an Ariane V launcher fairing volume, mass and energy budgets should be reduced to maximum.
Adaptability = Expandable + Foldable (Fabrics) + Inflatable
FABRICS IN SPACE ARCHITECTURE: Design
Textile architecture for advance space habitats

Lower deck

Programme Distribution

- A MAIN ACCESS: 12 m²
- B SECONDARY ACCESS: 12 m²
- DUST CONTROL: 3.2 m²
- ACCESS OPERATIONS/STORAGE: 14 m²
- LIVING AREA/KITCHEN: 18 m²
- SCIENCE AREA: 18 m²
- GREEN HOUSE: 10 m²
- COMMON AREAS/BATHROOM: 4.8 m²
- TOTAL: 92 m²
FABRICS IN SPACE ARCHITECTURE: Design

Textile architecture for advanced space habitats

Upper deck
FABRICS IN SPACE ARCHITECTURE: Design
Textile architecture for advanced space habitats
FABRICS IN SPACE ARCHITECTURE: Construction

Textile architecture for advance space habitats
THANK YOU...