

Assuring Software Cost Estimates: Is it an Oxymoron?

Jairus Hihn1
Jet Propulsion Laboratory

California Institute of Technology

Grant Tregre
NASA

Goddard Space Flight Center

Abstract1

The software industry repeatedly observes cost
growth of well over 100% even after decades of cost
estimation research and well-known best practices, so
“What’s the problem?” In this paper we will provide
an overview of the current state of software cost
estimation best practice. We then explore whether
applying some of the methods used in software
assurance might improve the quality of software cost
estimates. This paper especially focuses on issues
associated with model calibration, estimate review,
and the development and documentation of estimates
as part of an integrated plan.

1. Introduction

The problems associated with inaccurate software
cost estimates are well documented. Early lifecycle
effort estimates can be inaccurate by up to 400% [1,
p310]. In a study of NASA software development
projects conducted in the late nineties, the most
frequently identified cause (71%) of cost overrun with
the largest impact (35% contribution to observed cost
growth) was basic failures in planning, estimation &
control [2]. In the worst case, over-running projects
are canceled, resulting in the waste of development
efforts. For example, in 2003, NASA canceled the
CLCS (Check Out Launch Control System) project
after spending hundreds of millions of dollars on
software development. The project was canceled after
the initial estimate of $206 million was increased to
between $488 million and $533 million. Upon
cancelation, approximately 400 developers lost their
jobs [3].

©2012. All rights reserved.
1) The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

These problems continue even after years of
research on cost estimation techniques, the
development of sophisticated cost models [1], the
creation of cost related professional societies and
certification programs for professional cost estimators
[4]. Many companies have defined requirements, cost
processes and standardized templates to address cost
estimation problems. In spite of these contributions to
defining Software Estimation Best Practices (BP), the
cost estimation community continues to struggle with
producing good cost estimates. This seems to be even
more of an issue in the aerospace and high tech
industries. One contributor to such inaccuracies is that
software engineers and managers continue to perform
bottom up estimates with little or no data to support
their assumptions and little or no consideration for risk
and uncertainty [5]. Software cost estimation is not as
difficult as theoretical physics or rocket science so,
given the technical aptitude of those within the
aerospace and high technology industries, one would
think that the community would be able to do a better
job of cost estimation. This paper explores the
contention that (1) many BPs exist but are simply not
applied in a consistent manner and (2) the accepted set
of cost estimation BPs that does exist, does not
completely address the entire cost estimation life-cycle.
This paper offers a more comprehensive cost
estimation life-cycle and an approach for assuring that
BPs and associated activities are followed.

2. State of Current Practice

Software cost growth may occur for several

reasons, including requirements changes, new
technologies, optimistic heritage assumptions,
simultaneous hardware development provided by
multiple partners, basic poor planning practices [2, 6],
miss application of methods, and corporate ‘strategic-
pricing’ with hopes of profiting on follow-on change
requests. Researchers have mostly focused on issues
associated with errors in estimation and often seek to
identify better estimation methods. Such efforts have
resulted in varying levels of support for approaches
such as analogy methods [8], nearest neighbor methods

[9] and regression models [1, 10, 12]. Although, more
recent research has proposed support for hybrid
methods [11]. Cost Practioners have focused on issues
associated with the use of regression models [10],
validation of model performance [13] and estimation
handbooks. Such estimation handbooks typically
describe the basic characteristics of effective
estimating which include clear identification of task,
broad participation in preparing estimates, availability
of valid data, standardized structure for the estimate,
provision for program uncertainties, recognition of
inflation, recognition of excluded costs, independent
review of estimates, and revision of estimates for
significant program changes [7, 14, 15, 16]. All of the
listed methods and activities should be considered
Software Estimation BP2 .

3. Cost Estimation Best Practices

The following is specific list of software cost
estimation Best Practices derived from the reference
books, handbooks and research papers discussed
above[1, 7, 9, 11, 12, 13, 14, 15, 16] combined with
material from the NASA JPL Software Cost Estimation
Class [17] the International Society of Parametric
Analysts Certification Class [4].

Establish a cost estimation infrastructure

These practices make estimation repeatable,

consistent, and provide the basis for objective data
driven estimates.

1. Develop and maintain a documented estimation

process
2. Establish a tailorable standard cost structure for all

projects
3. Develop and maintain a cost database that captures

the organization’s history. The database should
include
a. effort and cost actuals
b. history of estimates and budgets over the

lifecycle of a project.
c. key planning parameters such as software

size, requirements counts, cost model inputs
d. planned schedule dates for major milestones
e. defects counts

2 As an aside if one were to focus on estimation in the

construction industry or for hardware, there would be
common elements but also differences as estimation for
different types of projects and industries presents different
opportunities and risks.

4. Develop and maintain cost models that are
regularly tuned and validated against actuals

5. Peer review on a periodic basis

Performing the Estimate

These practices enable objective estimates that

address the inherent uncertainty in a cost estimate,
especially when made during the early stages in the
life-cycle.

1. Clearly define and documented the scope of effort
2. Determine the size of software

a. Most common sizing metrics are lines of
code, function points, software modules and
requirements

b. Be conservative with reuse assumptions
3. Base estimates on data whenever possible
4. Develop an integrated estimate which incorporates

technical scope, high level decomposition and a
schedule

5. Use multiple estimates which typically consists of
a. bottom up estimate
b. model based estimate
c. system/mission level analogies

6. Incorporate model assumption and uncertainty by
estimating a cost distribution

7. Identify and include risks in the estimate
8. Review and peer-review the estimate
9. Re-estimate when changes occur and at major

milestones

Document the Estimate

These practices make an estimate defensible,

traceable and updatable.

1. Maintain information in an electronic form that
can be easily modified

2. Document the basis of estimate (BOE), which
should include
a. Statement of Work and Scope
b. Work Breakdown Structure (WBS) with

associated dictionary
c. Effort estimates with supporting assumptions
d. Planning parameters or supporting lower level

estimates, e.g. software size estimates
e. Supporting model estimates and analogies
f. Schedule
g. Procurements
h. Acquisition approach (if applicable)
i. Cost estimates
j. Significant cost and risk drivers
k. Risk items, issues, and/or any known liens

Monitoring Performance

These practices provide baseline and trend

indicators of performance. They also identify areas of
weakness, the need for process improvement and
impact measures.

1. Track performance

a. Define a set of metrics for monitoring
estimate accuracy and budget growth

2. Monitor key assumptions and planning parameters
such as sizing metrics.

What is not addressed directly here is the issue

that all too often budgets are set while minimizing or
even ignoring the estimates of the software teams or
organizations. This is partially addressed by 15a,
which enables monitoring estimates and budgets
against actuals and would provide objective data when
unrealistic budgets are a systemic problem in an
organization.

4. What is Software Assurance

Given the paradox of maintaining a reasonable
industry standards and BPs for performing software
cost estimation and yet repeatedly producing
unreasonable cost overruns and estimation
inaccuracies, one should consider whether or not the
software cost estimation BPs are actually being
implemented. Efforts associated with assuring that
such software cost BPs and standards are followed can
be borrowed from the Software Assurance community
and its methodologies for assuring software during the
software development process. This paper suggests
that key philosophies and techniques found within the
discipline of software assurance, if applied to software
cost estimation efforts, could help to produce higher
quality and more reliable software cost estimates.
Software Assurance techniques have been proven to
increase the quality and credibility of software
products [18,21]. Just as software assurance techniques
help to better software development efforts and the
usefulness of software products, these same software
assurance techniques can be extrapolated to increase
the quality and credibility of software cost estimation
efforts. This section describes some of the
fundamental principles of software assurance and
offers suggestions as to the specific techniques that
could be applied to software cost estimation activities.

Software Assurance is the engineering discipline
that ensures quality is built into software processes and
products and that the software products operate safely.
The NASA, agency-level NASA Software Assurance
Standard defines Software Assurance as the planned

and systematic set of activities that ensure that
software life cycle processes and products conform to
requirements, standards, and procedures. For NASA
this includes the disciplines of Software Quality
(functions of Software Quality Engineering, Software
Quality Assurance, Software Quality Control),
Software Safety, Software Reliability, Software
Verification and Validation, and IV&V [20]. Each
sub-function within the over-arching discipline of
Software Assurance contributes to identifying and/or
mitigating risks and builds credibility into the software
development process, such that quality software
processes and software products are developed.
Although it is recognized that how Software Assurance
methodologies are performed may differ from one
corporate culture to the next, many government
agencies and corporations have developed at least
some form of Software Assurance or quality control
practices for software development. This paper will
mostly focus on the Software Assurance
methodologies used at NASA and how these
methodologies could be applied to improve the quality
of software cost estimates. It is recognized that at
NASA, the discipline of Software Assurance includes
the sub-disciplines of Software Safety, Software
Reliability, Software Quality and Software
Verification. However, this paper will mostly offer
parallels between Software Quality Assurance and how
it can be applied to software cost estimation.

Software Quality

Software Quality Assurance implements
techniques to make sure that that software development
products and processes are in conformance with
established procedures, appropriate for the project of
interest. For example, Software Quality Assurance
engineers emphasizes that specific quality plans are in
place for each software development effort. Such
plans may include configuration management plans,
risk management plans, software management plans,
software development plans, etc. These plans are to be
adhered to throughout the software development
lifecycle. Typically, the Software Quality Assurance
engineer will establish working lines of
communication between the software systems engineer
and project management leadership to ensure that any
higher-level standards and BPs are flowed down to the
project-level and that appropriate project-level plans
are followed. Another key attribute of the software
quality assurance effort is making sure that software
requirements are clearly written,, traceable and
verifiable. To this extent quality assurance engineers
review all plans, procedures, requirements, design,
verification documentation, reports, schedules, and

records and assess them for risk to the project and
impact against the quality of the software being
developed. Formal testing events and peer reviews are
typically attended by software quality assurance
personnel who serve as independent assessors of
activities. Software quality audits may be planned (or
initiated randomly) to assess the project’s adherence to
product quality standards and procedures. Software
quality assurance engineers assure that software quality
metrics have been defined and are being used to ensure
that data trends associated with risk areas are reported
and mitigated as necessary. Software Quality
Assurance engineers assure that software is tested
appropriately and verified for compliance with
functional and performance requirements. Problem
reporting is of high interest to software quality
assurance engineers. Likewise, portions of the
software that are deemed significant and may add
additional risk to the development effort are reported to
key decision-making boards and panels. To this extent
the role of the Software Quality Assurance engineer is
to assure that software is being developed according to
the given standards and procedures predefined by the
agency and project of interest. These processes and
procedures help to establish control, consistency,
repeatability, maintenance, sustainability, traceability,
and trend analysis. These attributes help to establish
robust software development efforts and builds
confidence that the software being developed will
perform successfully and safely.

Example Design Inspection Walkthrough Checklist

There are several checklists that can be used to
perform quality assurance functions during the
software development lifecycle. Figure 1 provides an
example of a Checklist, used to assure that software
design is developed within the context of a quality
standard. This checklist was developed by the
Software Engineering Division at Goddard Space
Flight Center, such that during a design walkthrough,
the software might be evaluated for Completeness,
Suitability, Correctness, Simplicity, and Quality. It is
important to note here, that this checklist was
developed by the software engineering division, and
not by the Quality Assurance organization, which is a
positive sign of internal accountability by the Software
Engineering organization and the Software Assurance
organization. Additional independent Software
Quality checklists may be offered as examples in
future papers. The software quality assurance
organization at GSFC would use checklists such as this
to perform compliance assessments against the
software design.

Figure 1: Design Inspection Walkthrough Checklist

5. How Can Assurance Methods be
Applied to Software Cost Estimates

NASA maintains agency level
standards/requirements for both Software Engineering
as well as Software Assurance. NASA programs and
projects must abide by these standards when
developing software, or seek relief in the form of a
waiver or deviation. These standards impose
requirements on procedures, architecture efforts,
implementation activities, and other related tasks used
to acquire, develop, assure, and maintain software for
NASA programs. The Software Engineering agency-
level requirements are designed to be a minimum set of
requirements to protect the Agency's investment in
software engineering products and to fulfill its
responsibility to the citizens of the United States of
America [21]. Likewise NASA agency-level Software
Assurance requirements were developed in order to
establish a common framework, including generic
quality procedures for the software assurance process
in support of all life cycle processes, establish and
support the cooperation of various groups who are
conducting different aspects of the total software
assurance process, support and utilize the independent
reporting structure required for NASA safety,
reliability, and quality processes, and define software
assurance activities and tasks to meet the objectives of
software assurance [18]. These two high-level agency
standards, provide the overall context for which
software engineering and software assurance should be
performed. Together, the standards compliment each
other in order to comprehensively address the
development processes/practices as well as to assure
that those processes/practices are fulfilled according to
the established plans. This approach can be adopted
within the community of software estimators. The
following text offer parallels between Software
Assurance methodologies and how they could be
applied to Software Cost Estimation.

One of the paramount functions within Software
Assurance is ensuring that guidelines, standards,
processes and procedures are documented and
followed. Without the appropriate level of oversight,
software development efforts may loose configuration
control, traceability, sustainability and maintainability.
Software Assurance engineers could extend these very
same methodologies to ensure that software cost
estimation processes and standards are followed.
Software Assurance personnel could maintain
configuration control and track any changes to the
estimation process. Software Assurance personnel
could manage any tailoring of estimation standards or
deviations from the defined process as well as facilitate
any impact analysis to be performed on any major

changes to the process. This approach would enable
the appropriate amount of independent over-sight and
in-sight, by extending typical software assurance
functions to include assurance of software cost
estimation efforts.

Software assurance requirements typically
require traceability between the software engineering
requirements and areas of concern related to safety,
quality, and reliability. For example, NASA software
developments require that safety critical software
requirements are clearly defined as safety critical and
are traceable to hazard analysis. To this extent, if there
are changes to any requirements that have safety
implications, the appropriate parties are made aware of
such changes. This requirement traceability is
required to ensure that there is an awareness of how the
such software changes may impact the over all safety
or reliability of the system. Likewise, one might want
to trace specific software cost estimates to particular
areas of the software development activity, such that
any metrics anomalies can be clearly identified and
isolated for the appropriate corrective action.

Software Assurance standards typically require
the proper training and skill levels for those developing
software, testing software and implementing software.
This is especially important in the case of safety
critical or mission critical software. This training
emphasizes the idea is that those developing software
should have attained a given level of aptitude or one
might expect the resulting software quality to be
compromised. Likewise, operating software within a
testing environment without the appropriate skill level
to do so, could be detrimental to the testing exercise,
could impose damage on the system and even more
severe, could cause loss of human life. As a result,
software assurance engineers levy requirements that
ensure software developers, testers and operators are
properly trained.

The essence of such training requirements could
be applied to personnel performing software cost
estimations. The person performing the software cost
estimate should be well trained within the industry and
discipline of software development for which the
estimate is being performed. In other words, the
software cost estimator should be familiar with the
development for which he/she is estimating. Often
times, the cost estimators work within completely
different business units or organizations from which
the software is being performed. The cost estimator
should at least have some domain knowledge of that
which is to be estimated.. Maintaining the appropriate
level of training also applies to understanding what
requirements and standards the software developers
will need to follow. For example, NASA standards
invoke a variety of requirements depending on if the

mission of interest is a human-rated mission, robotic-
space mission of high importance or a low-risk
experiment. Maintaining a working knowledge of the
software standards and requirements can be ensured
via the proper training of the software cost estimators.
Lastly, training applies to the proper use of any tools
used to perform the software cost estimates. Assurance
engineers should ensure that software cost estimators
are well and trained on the tool being used and that
they are knowledgeable enough on that specific tool to
use it properly.

Software Assurance engineers are typically
involved with ensuring that algorithms and quantitative
models used within the flight and ground software
meets the intended need of use. Software Assurance
engineers ensure that such algorithms and models are
implemented correctly and are controlled properly.
There are many problems that can result from loose
control and open manipulation of algorithms in
spacecraft software. Software assurance engineers
support the development and planning of such
algorithms to ensure that processes are adhered to and
testing of algorithms is sufficient. These same
software assurance principles should be applied to
software cost estimation efforts involving quantitative
modeling and manipulation of estimation inputs.
Software estimation tools use a variety of different
algorithms and modeling assumptions, some of which
can be manipulated by the user. Manipulation of
estimation modeling algorithms and or the use of
equations for estimating cost should be verified and
controlled to the appropriate level of intended use by
Software Assurance engineers. Software Assurance
engineers could independently verify cost models of
interest, ensure cost models are in synch with software
cost estimation standards and regulatory documents,
and ensure models are used within the context of their
purpose. When cost estimate distributions are
performed, Software Assurance engineers should
maintain objective evidence of distribution results for
future references and any potential distribution
function re-runs.

Software Assurance engineers typically support
software development peer reviews activities in order
to gain necessary levels of insight needed to perform
software assurance functions as well as to ensure that
such peer reviews are being conducted according to the
standards. This function can be extended to have
Software Assurance engineers participate in cost
estimation reviews.

The use of historical databases can be an
enormous help to software cost estimators. However,
when using historical databases it is important to make
sure that the information in those databases are verified
for the intended use and any known areas of concern

are addressed prior to use. Databases may include
information from previous projects, however
assumptions used for one project may be very different
from another project. Software Assurance personnel
could help to review software cost databases for
consistency with software standards, maintain
configuration control and track any major changes with
database and audit estimation efforts for proper use of
the database.

Software Assurance Engineers and Software
Engineers use metric data to expose trends that may
lead to problematic portions of the software or risk
areas of interest. Metrics should be kept when
performing software estimates and compared to actuals
throughout the life of the development activity for
similar reasons. Such trend data can help to uncover
problem or risk areas associated with cost overruns or
inaccuracies of a particular group or functional area.

Software cost estimators will typically develop
some form of assumption regarding the size of the
software. It may help to have Software Assurance
personnel provide an independent verification of the
sizing estimate, check inputs and assumptions for
sizing activity, and identify any areas of concern or any
considerations that may not be taken into account by
sizing tools. This would offer sort of an independent
sanity-check on the sizing estimate and provide the
estimators with multiple data points on which to base a
final estimate. Software Assurance personnel could
help vet the software cost estimate approach with
personnel at the working level, who may be
responsible for performing the actual software
development effort. This would help to ensure that the
expectations associated with the software cost
estimates are within reason with the personnel
expected to perform the actual software development
activities.

Software Assurance engineers are involved with
every major milestone review throughout the software
development lifecycle. The intent is that certain
activities need to be reevaluated at least at every major
milestone. Likewise, Software Assurance engineers
could review software cost estimates at major
milestone reviews in order to compare actuals to the
initial estimates. This comparison would help ensure
that the quality of the estimation practices are not
degraded as the project moves forward and it would
help to ensure that any new assumptions have been
taken into account.

Example Sizing and Heritage Checklists

Software Quality checklists are used as tools for
identifying key items of interest during assurance
activities. Similar checklists can be used improve

software cost estimate quality. Figure 1, provides a
notional software cost estimation checklist. Two of
the most important cost drivers are the estimates of the
size of the system and the amount of reuse (heritage)
from previous systems. Given the level of importance
that these two cost drivers impose on estimation
efforts, a checklist approach might be especially
beneficial. These two areas of interest are often root
cause contributors for software estimation inaccuracies
and cost overruns. Notional examples of a Software
Lines of Code (SLOC) Determination Quality
Assurance Checklist and a Consideration for Heritage
Quality Assurance Checklist that could be used for
Software Cost Estimation purposes are provided in
Figure 2 and Figure 3.

!"#$%&'()!*+(),-(./0*1$
1. Source of analogy reference (be specific):
2. Why is this analogy appropriate?
3. Is the code count consistent with institutional or project counting
rules?

a. Was a code counter used?
b. Delivered vs written code?
c. Types of source lines included (Executable

 i. Nonexecutable
 ii. Declarations
 iii. Compiler directives
 iv. Comments
 v. Blank lines
4. Are size adjustment rules documented

5. Are size adjustment rules reproducible
Figure 2: Example Software Size Checklist

!"#$%&'()*('+$&,()-.(/01+2$
1. Project/System
2. Software Element Name (Modules, CSCI, Subsystem)
3. Software Element Description

4. History of Heritage Software
a) Software Class of Heritage Module (Class A, B, C)
b) Has the software element been successfully reused ona
previous project?

c) Was the Heritage Module designed to be reused (Yes, No)
d) Do the following artifacts exist
i) Design
ii) Unit Test
iii) Open Defect Reports
iv) Record of previous failure reports exists
5. Heritage Type (Ruese, Reengineered)

34 New Module Software Class (Class A, B, C)

7. Similarity of Use Case with the heritage element
8. Is the heritage software compatible with current
requirements
Figure 3: Example Software Heritage Checklist

6. Lessons Learned from Software Process
Assessment Methods at JPL

While the exact method proposed in this paper has not
been performed there are two JPL activities being
performed that provide some insight into current
practice and the usefulness of assessment type
methodologies. The process assessment activities that
are performed, are the Tailoring Record (TR) used by
the engineering divisions and what is known as PPQA
or Product and Process Quality Assessments which are
typically performed by the software quality assurance
organization. The TR is a record of what projects plan
to do and PPQA provides a record of what projects are
actually doing relative to their intent. The TR captures
what the team says they will do based on their self
report while PPQA is based on an independent
assessment of an artifact [23].

The TR compares the processes used on an individual
software project to the institutional Software
Development Standard Processes (SDSP). The TR is
required because the JPL processes are highly
tailorable so that they can be efficiently used by a wide
range of software, which differ in size, domain and
required reliability. The TR is generated early in the
lifecycle of a project or task and ultimately assists the
initial writing of software management and
development plans. The SDSPs consist of 523 sub-
activities in 21 processes3 [24] We only review those
processes that are being utilized by the project. For
example new flight software developments engage all
process while projects in maintenance may only
engage the implementation and validation processes.
Over the last three to four years approximately fifty
TR’s have been completed. The initial TRs took 6 to
16 hours to complete. Today as we have learned to
make the review process more efficient it only requires
4-6 hours to complete a TR. This indicates that when
first starting the TR process it took 1 to 2 minutes per
sub-activity while today it requires 0.5 to 0.8 minute
per sub-activity. The JPL estimation process has 14
sub-activities which correspond to the Best Practices 6-
14 and only at a very high level to Best Practice 16
(See Section 3). As currently written the estimation
process takes 7 to 11 minutes to review. At JPL the
primary non-performance in the estimation process is
documenting the estimate, which is Best Practice 16.
To more precisely reflect the Best Practices identified
in this paper the number of sub-activities in the current
JPL process would need to be increased in length from
50 to 100%. Virtually all the changes would be in the

3 Excludes the Software Acquisition Management process.

document BOE activity. This suggests that it would
take a minimum of 10 minutes to a maximum of 22
minutes to review the expanded process.

PPQA provides objective insight into how well a
project is adhering to its planned processes and to the
standards it has adopted for its work products. Tasks
are required to develop an audit plan, which includes
evaluation of processes and products based on the
organizations’ quality objectives and following the JPL
PPQA process. While PPQA can be conducted by line
management with appropriate training and oversight, a
large percentage of these activities are performed by
JPL’s Software Quality Assurance (SQA) organization.
This evaluation method is more analogous to the
assessment method proposed here. Fortunately, very
recently the software assurance organization has
started to experiment with recording time estimates for
completion of different assessment activities. We have
small number of observations which indicate it requires
from 12 to 20 minutes per page with a 15 minute
average. The documents reviewed did not include a
planning or BOE document but included
requirements, architecture and design documents
along with some release documents. These documents
ranged in length from 15 to 31 pages with an average
length of 19 pages. At JPL BOE’s (Best Practices 6
through 16) are typically in slide form not paper style
documents. Slide pages are overall less dense then a
paper pages. One of the more complete BOE’s at JPL
was 20 pages with 9 pages of back-up. This suggests
an assurance style review would take from 2.5 hours to
7 hours. It would be expected that this would be
conducted in preparation to a cost review where the
‘correctness’ of the estimate would assessed. To date
no direct PPQA assessments have been performed on
software cost estimates. In the last 2.5 years there has
been one finding against estimation that arose during
an assessment of a software management plan.

7. Conclusion and Next Steps

Over the last three decades there have been

extensive advances in the techniques used to estimate
and monitor software development cost. In spite of
these improvements in quantitative methods there
remains a struggle to complete projects within the
planned time and schedule. The essence of this paper
is that the community understands the practices and
procedures that need to be performed in order to do
better cost estimation, it just needs to follow through
and do it! One mechanism to increase the use of these
known BPs is to use the well-established quality
assurance methods of independent audits. This can be
performed by the software assurance organization but

can also be performed by the engineering or business
divisions within an organization. Clearly, this paper
does not address all of the causes of software cost
growth, yet perhaps adding an assurance function to
the software cost estimation effort will reduce the
influence of those causes associated with undisciplined
and even unprofessional practices.

Future follow-on efforts of this paper include
development of a more complete set of assurance
checklists, followed by a pilot program to implement
these checklists on a NASA project. As part of the
pilot study, methodologies would be established to
assess and measure the use of the assurance approach
and the associated impact on the project’s conformance
with software cost estimation best practices.

7. References

[1] B. Boehm, Software Engineering Economics. Prentice
Hall, 1981.

[2] J. Hihn and H. Habib-agahi, “Identification and
measurement of the sources of flight software cost growth,”
in Proceedings of the 22nd Annual Conference of the
International Society of Parametric Analysts (ISPA),
Noordwijk, Netherlands, 8-10 May 2000.

[3] Spareref.com, “Nasa to shut down checkout & launch
control system,” August 26, 2002,
http://www.spaceref.com/news/viewnews.html? id=475.

[4] “Certified Parametric Practioner Tutorial,”, Proceedings
of the 2012 ISPA/SCEA Joint International Conference &
Training Workshop, 14-16 May 2012, Brussels, Belgium.
Can be found at http://www.sceaonline.org/.

[5] Hihn, J.M. and H. Habib-agahi. Cost Estimation of
Software Intensive Projects: A Survey of Current Practices.
Proceedings of the Thirteenth IEEE International Conference
on Software Engineering, May 13-16, 1991.

[6] Controlling Cost Growth of NASA Earth and Space
Science Missions, Committee on Cost Growth in NASA
Earth and Space Science Missions, National Research
Council, The National Academies Press, 2010.

[7] GAO Cost Estimating and Assessment Guide: Best
Practices for Developing and Managing Capital Program
Costs, United States Government Accountability Office,
GAO-09-3SP, March 2009.

[8] M. Shepperd and C. Schofield, “Estimating software
project effort using analogies,” IEEE Transactions on
Software Engineering, vol. 23, no. 12, November 1997,

[9] M. Shepperd and G. F. Kadoda, “Comparing software
prediction techniques using simulation,” IEEE Trans.
Software Eng, vol. 27,no. 11, pp. 1014–1022, 2001.

[10] C. Kemerer, “An empirical validation of software cost
estimation models,” Communications of the ACM, vol. 30,
no. 5, pp. 416–429, May 1987.

[11] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting
best practices for effort estimation,” IEEE Transactions on
Software Engineering, November 2006.

[12] R. Strutzke, Estimating Software-Intensive Systems:
Products, Projects and Processes. Addison Wesley, 2005.

[13] K. Lum, J. Powell, and J. Hihn, “Validation of
spacecraft software cost estimation models for flight and
ground systems,” in ISPA Conference Proceedings, Software
Modeling Track, May 2002.

[14] 2008 NASA Cost Estimating Handbook, NASA
Headquarters Cost Analysis Division. Can be found at
http://www.ceh.nasa.gov .

[15] Lum, K., Bramble, M., Hihn, J., et. al., JPL Handbook
for Software Cost Estimation, JPL D-26303, June 2003

[16] Naval Center for Cost Analysis and Air Force Cost
Analysis Agency , Software Development Cost Estimating
Handbook, 2008, Can be found at
https://acc.dau.mil/CommunityBrowser.aspx?id=323892

[17] Hihn, J., JPL Software Cost estimation Class, JPL, 2012.
Cleared version is available by contacting the author
jhihn@jpl.nasa.gov.

[18] Port, D., Wilf, J., A Study on the Perceived Value of

Software Quality Assurance at JPL, Proceedings of the 44th
Hawaii International Conference on System Sciences – 2011,
Kauai, Hawaii, January, 2011.

[19] Barry Boehm, LiGuo Huang, Apurva Jain, and Ray
Madachy, The ROI of Software Dependability: The iDAVE
Model, IEEE SOFTWARE, May/June 2004

[20] NASA Software Assurance Standard NASA-STD-
8739.8 2004

[21] NASA Software Engineering Requirements, NPR-
7150.2A, 2009

[22] NASA Design Inspection/Walkthrough Checklist,
Number 580-CK-058-02, 580 Software Engineering Division
(SED), 200X.

[23] J. Hihn, S. Morgan, et. al., JPL Mission Software: State
of Software Report 2011 External Release, JPL D-29115.
Contact jhihn@jpl.nasa.gov for a copy.

[24] J. Hihn, S. Lewicki, S. Morgan, Bootstrapping Process
Improvement Metrics: CMMI Level 4 Process Improvement
Metrics in a Level 3 World, Proceedings of the 44th
Hawaiian International Conference on System Sciences
(HICSS 44), Lihue, HI, January 4-7, 2011

