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~ EXTREMES IN A WARMING WORLD
4. How can understanding of the effects and uncertainties of water and
energy exchanges in the current and changing climate be improved and
conveyed?

*Conclusion of a USA National Security report on risks associated with changing
climate.



Outline of this talk

What we know/don’t know about the changes to the water
cycle (precipitation) in a warming world.

A challenge: snowfall

Precipitation is just one component of an inter-related set of
climate processes

A complication: aerosols
Observational systems: a vision for the future.
Summary



What we know/don’t know about the changes
to the water cycle (precipitation) in a warming
world.



The global-average accumulation of precipitation:
Its change in a warming world is predictable
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This global rise of 2%/K is highly predictable to the extent that water vapor rise of
7%/K is predictable. It is a consequence of energy balance PLUS basic physics in
the way the water molecule absorbs (& emits) energy —Stephens and Hu (2010)
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In a climate modeling context, usually only
accumulation is considered. But for many reasons

® The frequency and duration (how often) matters
® The intensity (the rate when it does rain) matters
® The phase: snow or rain also matters

accumulation = 2 freq of X  intensity
over At occurrence when raining



We now have definitive information
about the global occurrence of
precipitation (from CloudSat) and now we
definitively can state that models globally
produce precipitation too frequently
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DJF Precipitation Trend 2005-2060 DJF Precipitation
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A challenge: snowfall



Mean Snowfall Rate (mm/day)

Snowfall observations:
CloudSat provides the 15t real
spaceborne observations
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CloudSat global snowfall
product — the only real global
product but how good is it?

A challenge to retrieve and a
challenge to validate.




Connecting CloudSat snowfall to GRACE ice mass changes
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Precipitation is just one component of an
inter-related set of climate processes
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The cloud-albedo climate problem is really a
cloud-rainfall problem
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The ‘climate sensitivities’ of current generation Earth system models are acutely sensitive
to processes that change the albedo of the system and precipitation is a key process in this
change.

This example of the effect of low cloud changes on the simulated warming over the 20t
century illustrates the sensitivity to how rainfall is produced in models that affect clouds
and the amount of reflected sunlight



A complication: aerosols



Convective storm invigoration by aerosol
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Aerosol and convection
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Storer et al. 2012

CloudSat observations combined with aerosol data from an ECMWF
aerosol-assimilation forecast shows distinct reveal that storms with
aerosol loading reach higher and have more ice mass (higher radar

reflectivity value), consistent with the invigoration hypothesis.



Observational systems for precipitation:
a vision for the future.
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Vision for the Future:
3-frequency (14, 35, 94 GHz) radar + aerosol is the optimum
observing system for precipitation:

* Ka/W band is optimum
choice for observing
snowfall.
Ka/W/doppler is
optimum for cloud and
precipitation processes.
* Ku/Ka is optimum for
monitoring convective
precipitation.

* Ku/Ka/W is optimum for
relating cloud to
precipitation.

* W/aerosol is optimum
for aerosol-cloud
interaction.
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precipitation -is controlled by Earth’s energy balance and is a
guantifiable consequence of the water vapor feedback. Predictability rests on the
degree to which the water vapor feedback is predictable.

to a significant extent, changes are shaped by atmospheric
circulation changes but we do not know the extent to which regional scale changes
are predictable. The impacts of changes to atmospheric circulation on regional
scale water cycle changes can be dramatic.

significant biases to the CHARACTER of precipitation (frequency and
intensity) is related to how the precipitation process is parameterized in models.

We still do not know the extent to which the water cycle is influenced by
aerosol but anecdotal evidence is building. The character of precipitation is affected
by the way aerosol influence clouds and thus affects the forcing of the climate
system through the albedo effect.

we still have a way to go and need to approach the problem in a
more integrated way (tie clouds, aerosol and precipitation together and then link to
soil moisture, etc). Globally our capabilities seriously lag behind the science and
model development.
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