Improving by a Factor of 10^{16}

A History of Pushing All the Boundaries in Deep Space Communications

Dr. Les Deutsch
Interplanetary Network Chief Technologist
Jet Propulsion Laboratory
California Institute of Technology
June 28, 2012
Some Current Deep Space Missions

- **Cassini**: Saturn
- **Dawn**: Asteroids
- **Hayabusa**: Asteroid
- **Kepler**: Extrasolar Planets
- **GRAIL**: Moon
- **Mars Odyssey**
- **Mars Express**
- **New Horizons**: Pluto
- **Rosetta**: Comet
- **Voyager**: Interstellar
- **SIRTF**: Astronomy
- **WMAP**: Astronomy
- **Mars Reconnaissance Orbiter**
- **MEOSSER**: Mercury
Deep Space Telemetry

Doubling ~1.2 years – much faster than Moore’s Law
Improving by a Factor of 10^{16}

DSN Facilities

Goldstone, California

- DSS-14 70m
- DSS-15 34m HEF
- DSS-24 34m (BWG-1)
- DSS-25 34m (BWG-2)
- DSS-26 34m (BWG-3)
- DSS-27 34m (HSB)
- DSS-28 34m (HSB)
- DSS-29 34m (HEF)

Madrid, Spain

- DSS-34 34m (BWG-1)
- DSS-35 34m (in 2015)
- DSS-43 70m
- DSS-45 34m (HEF)

Canberra, Australia

- DSS-45 34m (HEF)
- DSS-35 34m (HEF)

JPL, Pasadena

- Network Operations Control Center (NOCC)

ITT, Monrovia

- Service Preparation, Logistics, Compatibility Testing, O&M Analysis

CTT-22 Compatibility Test Trailer

MIL-71 Launch Support Facility at KSC

JPL, Pasadena Network Operations Control Center (NOCC)
DSN Antennas in Madrid, Spain
This is a Small Part of a Big Story

• The history of communications with deep space is full of interesting problems that have been solved
• This talk concentrates on only one of these: receiving digital information from spacecraft far from Earth
• Other interesting subjects include
 – Getting information from Earth to deep space
 – Navigating spacecraft across the solar system using radio and/or optical signals
 – Using the communications link as a science instrument to probe planets, moons, small bodies, and the bounds of theoretical physics
Deep Space Link Parameters

- Data Rate, \(r \)
- Power, \(P_T \)
- Wavelength, \(\lambda \)
- Antenna Efficiency, \(\mu_T \)
- Antenna Aperture, \(A_T \)
- Pointing Loss, \(L_T \)
- Space Loss, \(L_S \)
- Pointing Loss, \(L_{PR} \)
- Antenna Aperture, \(A_R \)
- Antenna Efficiency, \(\mu_R \)
- Receiver Noise

Improving by a Factor of \(10^{16} \)
Deep Space Link Equations

Space Loss

\[L_S = \left(\frac{\lambda}{4\pi d} \right)^2 \]

Antenna Gain

\[G_i = \frac{4\pi \mu_i A_i}{\lambda^2} \]

Received Power Per Bit

\[P_R = P_T G_T L_{PT} L_S L_{PR} G_R / r \]

Noise Spectral Density

\[N_0 = kT \]

Noise Sources

\[T = T_{\text{cosmic background}} + T_{\text{hot bodies}} + T_{\text{RFI}} + T_{\text{atmosphere}} + T_{\text{receiver}} \]

Overall performance is a function of Signal-to-Noise ratio

\[\frac{P_R}{N^0} = \frac{P_T G_T L_{PT} L_S L_{PR} G_R / r}{kT} \]

The goal is to maximize data rate \((r)\), while maintaining reasonable (affordable) values of all the other parameters!
Space Loss

• All else being equal, communications performance is inversely proportional to distance squared

\[\frac{P_R}{N_0} = \frac{\text{constant}}{d^2} \]

• Need to overcome this problem of physics to be successful in deep space

<table>
<thead>
<tr>
<th>Place</th>
<th>Distance</th>
<th>Difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geo</td>
<td>4x10^4 km</td>
<td>Baseline</td>
</tr>
<tr>
<td>Moon</td>
<td>4x10^5 km</td>
<td>100</td>
</tr>
<tr>
<td>Mars</td>
<td>3x10^8 km</td>
<td>5.6x10^7</td>
</tr>
<tr>
<td>Jupiter</td>
<td>8x10^8 km</td>
<td>4.0x10^8</td>
</tr>
<tr>
<td>Pluto</td>
<td>5x10^9 km</td>
<td>1.6x10^10</td>
</tr>
</tbody>
</table>

Performance \sim \frac{1}{\text{distance}^2}
Big Antennas

\[\frac{P_R}{N_0} = \text{constant} \times A_T \times A_R \]

- Big antennas are good for deep space
- Spacecraft antennas have grown as the size of spacecraft fairings have grown
- The big payoff is in ground antennas
 - A single large investment serves all space missions
- This is why the DSN has the largest steerable communications antennas in the world
Improving by a Factor of 10^{16}

History of DSN Antennas

- **1958, 26m Station**
- **1966, 64m Station**
- **1979, 34m Station**
- **1988, 70m Station** (converted from prior 64 antennas)
The DSN’s Huge Antennas

- This is what people recognize most about the DSN
- DSN’s 70m antennas are the largest steerable communication antennas in the world
- Each also has a 20 KW transmitter
Even More: Antenna Arraying

- By carefully aligning and adding the signals from multiple antennas, a performance approaching that of the sum of the apertures is achieved.
- Used to help “save” the Galileo mission to Jupiter when its deployable antenna failed to open.
- Receive arraying is a standard service in the DSN today.
Antenna Efficiency

\[\frac{P_R}{N_0} = \text{constant} \times \mu_T \times \mu_R \]

- Spacecraft and DSN antennas are at least 70% efficient.
- DSN maintains this efficiency even as the huge antennas are rotated and elevated, by:
 - Adjusting the subreflector
 - Using master equatorials
 - Using the received signal to adjust pointing
- DSN antennas have “shaped reflectors”
Aperture: So Far

- Increases in spacecraft and ground apertures, improvements in antenna efficiency, and the use of arraying have so far led to a total improvement of 44.3 dB or a factor of more than 27,000.
Higher Frequency is Good

\[P_R/N_0 = \text{constant}/\lambda^2 \]

- The first deep space missions transmitted at 960 MHz
- 2.2 GHz (S-band) became standard in 1969
- 8.4 GHz (X-band) became prevalent in the early 1970s
- 32 GHz (Ka-band) is now becoming the standard
- Optical communications is currently in demonstration phase and will become operational in the next decade
Improving by a Factor of 10^{16}

Higher frequencies = some losses!

- The higher the frequency
 - the better you have to point the antennas
 - the more loss there will be in Earth’s atmosphere
 - the less efficient the electronics on the spacecraft
- This focuses technology development

Relative Performance of Ka-Band to X-band (dB)

- Ideal
- Ideal with Gnd-Based Tracking
- With no SC Losses
- Realistic Advantage
- Current X-Band

<table>
<thead>
<tr>
<th></th>
<th>DSN Losses</th>
<th>Atmosphere</th>
<th>Spacecraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>Attenuation</td>
<td>Atmospheric Noise Temp</td>
<td>System Noise Temperature (Excluding Atmospherics)</td>
</tr>
<tr>
<td>Ideal with Gnd-Based Tracking</td>
<td>Ant. Efficiency</td>
<td>Ant. Pointing</td>
<td>Ant. Pointing</td>
</tr>
<tr>
<td>With no SC Losses</td>
<td>Ant. Pointing</td>
<td>Ant. Pointing</td>
<td>Amp. Efficiency</td>
</tr>
<tr>
<td>Realistic Advantage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current X-Band</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Higher Frequencies: So Far

- As of today, the improvements to the system from using higher frequencies have amounted to 20.6 dB, a factor of ~115.

- When we add optical communications, the total will increase to 37.6 dB, a factor of ~5,800.
Improving by a Factor of 10^{16}

Lowering the System Noise

$$P_R/N_0 = \text{constant} / T$$

- Some elements to T cannot be controlled
- We concentrate on the contributions of spacecraft and DSN electronics to T
- We carefully avoid RFI
 - Deep space research has its own spectrum assignments from the ITU
- DSN detectors use the best low noise amplifiers we can build or buy
 - Hydrogen masers or HEMTs
 - Physical temperature is ~12 K

Ka-band (32 GHz) low noise amplifier
System Noise: So Far

- This one is harder to track
- Many other major system improvements have come with some associated lowering of T
 - e.g. larger antennas mean narrower beams, so less background noise enters the system
- As far as improvements that were directed specifically at T, so far we have had an improvement of

 17.5 dB, or a factor of ~57
Modulation – Optimizing P

- The way in which data is modulated onto a carrier plays a big part in communications performance.
- Consider these standard signaling sets:
 - Binary Phase Shift Keying (BPSK)
 - Quadrature Phase Shift Keying (QPSK)
 - Eight Phase Shift Keying (8PSK)

- BPSK has the best performance because the distance between adjacent signals is greatest for the same power.
Deep Space vs. Earth Orbiters

- Because power is at such a premium for deep space missions, BPSK is typically the preferred modulation scheme.
- For spacecraft closer to home – Earth orbiters – the situation is different:
 - They have “power to burn” because they are so close to home.
 - Because of this, they can fly massive, data-hungry instruments requiring Gbps of return link.
 - This leads to their use of higher-order modulation types like QPSK and 8PSK – or even higher in some cases!
Error-Correcting Codes

- Controlling redundancy in the data stream can result in the ability to correct errors in reception.
- Shannon theory showed that it is “easy” to come out ahead – which is a very non-intuitive result: it is better, and even easy, in most cases to add bits to the data stream without adding information!
Being stingy with Spacecraft bits

- Data compression
 - “Lossless” image compression has been used since Voyager
 - Today, more advanced algorithms can reduce transmitted data by more than a factor of 10 without detectable losses in fidelity
 - Larger compression ratios are used for less sensitive data

- Onboard processing
 - Advances in spacecraft computers have allowed preprocessing of science data onboard, resulting in fewer bits transmitted to Earth

- Autonomous operations
 - If Earth-based teams can be removed from decision loops, the associated data need not be moved to the Earth at all
 - Some of or modern spacecraft make major decisions autonomously: navigation, mobility, targeted science observations
• These improvements typically are inexpensive and quick – my favorite kind!
• I cannot even monitor all of them – since improvements in onboard processing and autonomy are booked within each flight project and not even considered part of the communications system
• So far, improvements in this area – in modulation and coding alone – have amounted to a total of

23.8dB or a factor of ~240
Here is a summary of the various improvements and showing their contribution to the 10^{16} result.

<table>
<thead>
<tr>
<th>Area</th>
<th>Improvement to date (dB)</th>
<th>Improvement by 2025 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture</td>
<td>35.8</td>
<td>44.3</td>
</tr>
<tr>
<td>Frequency</td>
<td>20.6</td>
<td>37.6</td>
</tr>
<tr>
<td>Power</td>
<td>38.4</td>
<td>38.4</td>
</tr>
<tr>
<td>Noise</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Modulation, Coding,</td>
<td>16.7</td>
<td>23.8</td>
</tr>
<tr>
<td>Compression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>129.2</td>
<td>161.6</td>
</tr>
</tbody>
</table>
Downlink Data Rate Possibilities

<table>
<thead>
<tr>
<th>Spacecraft Capabilities</th>
<th>Data Rate Today</th>
<th>Data Rate ~2020</th>
<th>Data Rate ~2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3m Antenna</td>
<td>3m Antenna</td>
<td>5m Antenna</td>
</tr>
<tr>
<td>X-Band</td>
<td>100 W Xmitter</td>
<td>Ka-Band</td>
<td>Ka-band</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 W Xmitter</td>
<td>200 W Xmitter</td>
</tr>
<tr>
<td>DSN Antennas</td>
<td>1 x 34m</td>
<td>3 x 34m</td>
<td>1 x 34m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars (0.6 AU)</td>
<td>20 Mbps</td>
<td>60 Mbps</td>
<td>*1.2 Gbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*1.3 Gbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*9.3 Gbps</td>
</tr>
<tr>
<td>Mars (2.6 AU)</td>
<td>1 Mbps</td>
<td>3 Mbps</td>
<td>21 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>71 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*500 Mbps</td>
</tr>
<tr>
<td>Jupiter</td>
<td>250 Kbps</td>
<td>750 Kbps</td>
<td>5 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115 Mbps</td>
</tr>
<tr>
<td>Saturn</td>
<td>71 Kbps</td>
<td>213 Kbps</td>
<td>1.4 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.7 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33 Mbps</td>
</tr>
<tr>
<td>Neptune</td>
<td>8 Kbps</td>
<td>24 Kbps</td>
<td>160 Kbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>470 Kbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>520 Kbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.7 Mbps</td>
</tr>
</tbody>
</table>

* Reference spacecraft is MRO-class (power and antenna), Rate 1/6 Turbo Coding, 3 dB margin, 90% weather, and 20° DSN antenna elevation

** Performance will likely be 2 to three times lower due to need for bandwidth-efficient modulation to remain in allocated spectrum
Some Amazing DSN Facts

Received Signal Sensitivity:
The received energy from Voyager at 100 AU, if integrated for 10 trillion years, would be just enough to power a refrigerator light bulb for one second!

Received power = 6.3x10\(^{-19}\) W

Command Power:
The DSN puts out enough power in commanding Voyager that it could easily provide high quality commercial TV at Jupiter!

Transmitted power = 400 kW

Dynamic Range of the DSN:
The ratio of the received signal power to the DSN transmitting power is like comparing the thickness of a sheet of tissue paper to the entire Earth!

Ratio = 10\(^{27}\)

Reference Clock Stabilities:
The clocks used in the DSN are so stable that they would drift only about 5 minutes if operated over the age of the universe!

1 part in 10\(^{15}\)
Future Challenges for the DSN

- Space mission communication needs follow a "Moore’s Law" requiring ~factor of 10 improvement per decade
- Human spaceflight will venture beyond low Earth orbit into deep space
 - Data rates will have to be much larger to support both the needs of the astronauts and the desires of the public
- Deep space optical communication will come into its own in the next couple of decades
- The DSN will evolve to meet these challenges and continue to enable space missions for at least the next 50 years