
Enhancing Cassini Operations & Science Planning Tools

Jonathan Castello
Mentor: Diane Conner

Co-Mentor: David Mittman

August 14, 2012

Introduction

The Cassini team uses a variety of software utilities as they manage and

coordinate their mission to Saturn. Most of these tools have been unchanged for

many years, and although stability is a virtue for long-lived space missions, there are

some less-fragile tools that could greatly benefit from modern improvements. This

report shall describe three such upgrades, including their architectural differences

and their overall impact. Emphasis is placed on the motivation and rationale behind

architectural choices rather than the final product, so as to illuminate the lessons

learned and discoveries made.

These three enhancements included developing a strategy for migrating

Science Planning utilities to a new execution model, rewriting the team's internal

portal for ease of use and maintenance, and developing a web-based agenda

application for tracking the sequence of files being transmitted to the Cassini

spacecraft. Of this set, the first two have been fully completed, while the agenda

application is currently in the early prototype stage.

IDL Runtime Licensing

The Science Planning group maintains a number of utilities for analysis and

manipulation of astronomical data. At runtime, an interpreter executes these tools,

which are written in the IDL programming language. While simple and

straightforward, the use of an interpreter requires an IDL "development license",

which costs $645 per year (Conner 2012). Exelis, the company behind IDL, also

offers an IDL "runtime license" for a one-time fee of $428. However, the execution

environments used by the two licenses differ in subtle ways. In the interest of

cutting costs, we developed a procedure to migrate existing IDL tools to this runtime

execution model.

The runtime environment imposes a number of limitations (ExelisVIS 2008).

The most fundamental restriction is that IDL source code cannot be compiled using

a runtime license. One obvious consequence is that development cannot be done

with a runtime license, but less clear is that functions similar to EXECUTE cannot be

used. EXECUTE accepts a string of IDL source, compiles it, and executes it. This

essentially invokes the interpreter, which has been totally disabled. In addition, the

working directory for the development environment is the same as the working

directory of the parent process (typically a shell); however, in the runtime

environment, the working directory is set to the location of the IDL program itself.

These differences must be accounted for when migrating an existing utility.

Given a small set of these Science Planning tools for experimentation, we

produced a generic, non-invasive strategy for migrating IDL utilities to a runtime

license. Given a program's main procedure, a new procedure is created that acts as

an adapter between the user's terminal and the original code. This involves

changing the working directory to the expected value, as well as translating

command-line arguments to IDL data structures. Each of the tools in our

experimental subset was wrapped in this way, and a build script was created to

import external dependencies and produce a final executable.

Initially, it appeared that every tool would need to be individually compiled

and deployed. Given the large number of these IDL tools, that would have

introduced a great deal of overhead. Luckily, we were able to exploit a curious

behavior of the IDL runtime environment, allowing all of the tools to be bundled into

one executable. Rather than calling a main procedure named at compile-time, IDL

executes a procedure sharing the name of the file being executed. By using symbolic

links to alias the file, any number of utilities can be accessed within a single binary

package.

In the end, this migration strategy has little overhead, and end users see only

a minor change in how the programs are initiated. A new utility can be wrapped

quickly and deployed without affecting other tools. Finally, projections suggest that

shifting to runtime-licensed execution will save up to $32k over the next five years

(Conner 2012).

Cassini Portal

The Cassini team maintains an internal portal, collecting links to many

critical locations in one location. This page has existed for upwards of fifteen years,

consisting of interleaved content, HTML, and JavaScript, and it became more difficult

to maintain over time. The team conducted a user survey to determine what users

want from a portal, which begat an effort to redesign the website accordingly.

Our primary goal in this project was to make the portal easier to maintain.

Using well-known data formats and a short Ruby script to generate the final page, a

basic templating system was built to address this. The original page was broken into

a loosely coupled pair of files: a data file using a combination of YAML and

Markdown, and a template file written with HTML and Mustache. According to the

current maintainer of the portal, this system is "very easy to use" and "much more

streamlined".

The YAML format ("Yet Another Markup Language") is a hierarchical format

often used for configuration and metadata, whereas Markdown is a format for

authoring posts, articles, and other textual content. The portal's data file nests

Markdown sections under the YAML hierarchy, cleanly organizing the customizable

elements of the page. This content is complemented by the template file, which

contains HTML markup with embedded placeholder flags where data needs to go.

When both files are passed through a build script, the placeholders are replaced

with the respective items in the data hierarchy, resulting in a static HTML file that

can be rendered normally in a browser.

Because the components of this architecture are loosely coupled, almost any

part of the process could be replaced and reused elsewhere. By swapping one data

file for another, a new website can be generated that shares the original's design.

Similarly, by replacing the template file, the website may be entirely redesigned

with minimal impact to the content itself.

While the backend was being developed, the additional goal of redesigning

the frontend was raised. Prior to my involvement, a candidate design had been

created. While the original portal consisted of a single page with many links, this

new design had multiple pages and was more aesthetically pleasing. Based on the

user survey, elements of this design were incorporated into a new front-end

architecture. We opted to retain the single-page approach, but utilized client-side

JavaScript to show only one section at a time.

The front-end architecture is minimal. The header, navigation sidebar, and

footer are all fixed to the same position on the screen, only allowing the content

pane to scroll. This ensures that certain elements are always easily accessible at any

time. The navigation links simply modify the "fragment" portion of the page (such as

"#about") without triggering a page refresh, while a JavaScript program hides and

shows sections based on the fragment's value. This technique allows sections to be

bookmarked separately from the rest of the portal, and it also allows intra-portal

links to be intuitively managed from the backend data file.

The flexibility of the modern browser environment also provided for agile

modifications. When a concern was raised during group meetings, the page's

content and styling could be modified in real-time, enabling fast consensus as each

issue was resolved. Such live-coding functionality was exceptionally helpful, and

was a major factor in the speed at which the design was finalized.

On August 6th, after four weeks of user acceptance testing and acting on

feedback, the new Portal was fully deployed. User response has been positive to

date. The previous revision of the Portal has been deprecated, though it will

continue to be supported in parallel for three months.

Sequence And Radiation Agenda (SARA)

When Cassini receives sequences of commands from Earth, it must store

them in on-board memory. Because of the limited amount of memory aboard the

spacecraft, the lifecycle of these command files is tracked so that available memory

can be used most effectively. A file's location becomes available to future commands

once it has executed or is no longer necessary. This tracking process is currently

maintained manually in an Excel spreadsheet, requiring a sequencing team lead to

input data already present in the Electronic Command Request Form (ECRF)

database. Furthermore, because it must be duplicated for multiple people to edit,

the spreadsheet is difficult to collaboratively maintain.

In order to automate and centralize this process, a new tool has been

proposed. This tool, entitled Sequence And Radiation Agenda (SARA), provides a

browser-based web interface for tracking the command file lifecycle. While

currently in the prototype phase, the architectural underpinnings are largely in

place. The agenda for each sequence is stored in a database on-disk, and file

information is fetched regularly from the ECRF database. A web front-end allows

team leads to collaborate and view any sequence in the system.

The back-end implements a thin API in PHP to serve JSON (JavaScript Object

Notation), a broadly supported data interchange format, to the client. The server

interacts with an on-disk database using SQLite3, a relational database implemented

within a single data file. While a custom format could have been used, it would have

required more time to implement and more effort to maintain; a full-fledged

database daemon such as MySQL could have been employed as well. However, PHP

comes with SQLite3 support built-in, and a single database file requires less

maintenance and management than a set of tables owned by a daemon.

The front-end heavily utilizes JavaScript, preventing the server and client

from becoming highly coupled. A library called Knockout.js provides two-way data

binding support, synchronizing internal data models and user controls in the GUI. In

addition, we adopted a design similar to that of the Cassini Portal, using a series of

fixed panes for navigation and control, and a single large scrolling pane for content.

SARA is currently in the early-prototype stage. While much of the

architecture is in place, the application is not yet feature-complete. In particular,

automatic retrieval of data is yet to be implemented, and the front-end layout is still

in flux. Future work should focus on these deficiencies and produce a full prototype

that sequencing leads can provide feedback on.

Conclusion

This report covers three projects: a strategy for building runtime versions of

existing IDL utilities, a new internal portal, and a method of tracking sequence

resources. Each of these developments targets a specific pain point in the previous

state of affairs: the build strategy enables a cost reduction from ~$40k to ~$10k,

saving up to $30k by end-of-mission; the portal streamlined the difficult process of

maintenance and content discovery; and the agenda application avoids the tedious

manual filling-out of known data. The first two projects have been finalized, leaving

only the SARA prototype incomplete. Future work should develop SARA further, as

well as oversee the continued use of the portal and IDL runtime tools.

Acknowledgements

The author would like to thank the following people:

• Diane Conner (JPL) and David Mittman (JPL), for their mentorship, support, and

guidance over the summer.

• Professor John Noga (California State University, Northridge) for his

recommendation to intern at JPL.

• Carmen Vetter (JPL) and Margaret Weisenfelder (JPL), for their work on the

Cassini Portal.

• Bill Heventhal (JPL) and Kari Magee (JPL), for explaining the Cassini project in

detail.

• Earl Bellinger (Indiana University) for his in-depth and enlightening technical

discussions.

Bibliography

Conner, Diane. 2012. “Cassini IDL Use and Cost Trade Study.”

ExelisVIS. 2008. “IDL Programmer’s Guide.” http://www.exelisvis.com/.

This research was carried out at the Jet Propulsion Laboratory, California

Institute of Technology, and was sponsored by MUST and the National Aeronautics

http://www.exelisvis.com/

and Space Administration. We recommend that you add an affiliation for the

student. Students can affiliate themselves with either JPL or their schools. If they

choose JPL, they should use the full Jet Propulsion Laboratory, California Institute of

Technology affiliation.

	Introduction
	IDL Runtime Licensing
	Cassini Portal
	Sequence And Radiation Agenda (SARA)
	Conclusion
	Acknowledgements
	Bibliography

