
Dynamic Communication Resource Negotiations

Edward Chow
Farrokh Vatan

George Paloulian

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA USA

Steve Frisbie
Zuzana Srostlik

SPAWAR Systems Center Pacific
San Diego, CA USA

Vasilios Kalomiris
Daniel Apgar

Army CERDEC S&TCD
Aberdeen Proving Ground, MD

Abstract— 1

Today’s advanced network management systems can automate
many aspects of the tactical networking operations within a
military domain. However, automation of joint and coalition
tactical networking across multiple domains remains challenging.
Due to potentially conflicting goals and priorities, human
agreement is often required before implementation into the
network operations. This is further complicated by incompatible
network management systems and security policies, rendering it
difficult to implement automatic network management, thus
requiring manual human intervention to the communication
protocols used at various network routers and endpoints. This
process of manual human intervention is tedious, error-prone,
and slow. In order to facilitate a better solution, we are pursuing
a technology which makes network management automated,
reliable, and fast. Automating the negotiation of the common
network communication parameters between different parties is
the subject of this paper. We present the technology that enables
inter-force dynamic communication resource negotiations to
enable ad-hoc inter-operation in the field between force domains,
without pre-planning. It also will enable a dynamic response to
changing conditions within the area of operations. Our solution
enables the rapid blending of intra-domain policies so that the
forces involved are able to inter-operate effectively without
overwhelming each other’s networks with in-appropriate or un-
warranted traffic. It will evaluate the policy rules and
configuration data for each of the domains, then generate a
compatible inter-domain policy and configuration that will
update the gateway systems between the two domains.

Keywords- Policy-Based Management; Policy Negotiation;
Network Management

I. INTRODUCTION
A policy is formally defined as a collection of rules, where

each rule consists of a set of conditions and a set of actions.
The conditions define when the policy rule is activated. Once a
policy rule is activated, actions embedded in that rule may be
executed or must be executed, depending on the characteristic
of that rule.

1 Portions of the research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology and was supported
in part by the Office of the Secretary of Defense Network Communication
Capability Program, under NASA prime contract NAS7-03001, Task Plan
Number 81-103508. Copyright 2012. All rights reserved.

For managing large-scale complex systems that
dynamically change their state to adapt to changes in the
application requirements, one of the promising technologies is
policy-based network management. This approach allows
dynamic modification of the policy rules without need for
human operators’ intervention. Such policy-based technology
allows automatic management of large systems and frees the
manager from monitoring the equipment and systems directly
and provides a systematic method for producing and modifying
policy rules.

The technology described in this paper is devoted to
providing a solution for one of the main challenges in network
management and communication. Since many of the tools
used by the various divisions do not have the ability to
communicate network management data with each other,
automatic network management is very difficult to implement
and manual human intervention to the communication
protocols used at various network routers and endpoints is
required. This process of manual human intervention is
tedious, error-prone, and slow. In order to facilitate a better
solution, we are pursuing a technology which makes network
management automated, reliable, and fast. Our focus is to
address the challenge of automating the negotiation of the
common network communication parameters between different
parties when they wish to communicate.

Policy negotiation is the process of determining the “best”
communication protocol that satisfies all requirements of all
parties involved. The main challenge here is how to reconcile
the various (and possibly conflicting) communications
protocols used by different parties. The solution must satisfy
the requirements of all parties involved, and should achieve it
in an efficient way. Which protocols are commonly available,
and what the definition of “best” is will be dependent on the
parties involved and their individual communications priorities.
Therefore, we are looking for a solution that on one hand
should be simple and intuitive to the operator, and on the other
hand should be implemented efficiently with minimal demand
on existing operational computing equipment while complying
with current and emerging standards.

For example, the Joint Tactical Radio System (JTRS)
consists of several types of tactical radios, from hand-held
radios to vehicle and aircraft mounted systems. When multiple
forces inter-connect, a Service Level Agreement (SLA) must
be established between these forces. This SLA typically
addresses traffic shaping policies such as capacity for the other
force’s use, when their organic reach back is available and
when it is not. An SLA also addresses traffic priority schemes,
quality of services, and access control lists. The traditional
method to establish an SLA is to negotiate the operational
aspects of the agreement, followed by developing and testing
the actual system configurations. Any problems discovered
result in a re-negotiation of the operational aspects and another
cycle of development and testing. Historically, this has been a
time-consuming process that takes months or even years to
complete.

In the emerging battle field, disparate forces are expected to
be assembled and operate together in the field at a pace that
does not allow for a lengthy SLA development phase. There is
a clear need to dynamically negotiate technical parameters for a
SLA based on pre-established operational policies for the two
or more forces involved.

As for the policy negotiation problem in general, it is
known that this is an intractable problem (technically, “NP-
complete”) [1], [2]. But this fact does not rule out the existence
of efficient methods for specific classes of policies, especially
types of policies implemented in specific desired applications.
Efficient policy negotiation methods have been suggested for
some classes of policies. One method that our approach is
based on is a promising method suggested in [3] wherein
policies are represented in defeasible logic and composition is
based on rules for non-monotonic inference. In this system,
policy writers construct meta-policies describing both the
policy that they wish to enforce and relations describing their
composition preferences. These relations can indicate the
required rules, the conditions for compromising the rules, and
the precedence relation among rules.

II. APPROACH

A. General Approach
We first describe a general mechanism of negotiation. In the

beginning, each party receives a description and the subject
matter of the negotiation. Based on this information, the party
chooses an appropriate template for negotiation; and based on
this template, a suitable negotiation policy strategy will be
activated. Here the basic assumption is that each party is
equipped in advance with a repertoire of policy negotiation
strategies that can handle conceivable situations. Once a
negotiation strategy is picked the negotiation process will
start. Each round of negotiation begins with each party
offering their requirements and what they are willing to make
available to the other party. Except for the initial offer, each
offer is obtained from the logic encapsulated in the negotiation
strategy and the offers from the other parties. Once all parties
provide their offers, a test will be performed to see whether
these offers satisfy the requirements. Later we describe our
mechanism for this test. If this test fails, then there are tests to

see whether the negotiation process should continue; these
tests may consist of some predetermined criteria or
specifically a bound on the number of rounds. Also in the case
that the offers do not satisfy the requirements, it is possible to
introduce some criteria for modifying the negotiation
strategies to avoid negotiation deadlock. To modify the
negotiation strategy, help from the strategy repository or
operator is possible.

To implement the above general scheme we have developed
a concrete implementation. Fig. 1 shows the flowchart of this
implementation. Each party has its own private policy that
describes its requirements, preferences, and strategy for
providing offers and revising them. In our implementation this
private policy is formulated in defeasible logic (see examples
in Section III). In our implementation the offers are
(defeasible) logical conclusions of the union of the private
policy, the results of the previous round, and the offers of
others parties. Of course, the initial offer is the conclusion of
the private policy only. To find the conclusions of defeasible
logic theory, we utilize JPL’s efficient defeasible engine, DPC
(Defeasible Policy Combination) [5], [6].

In our implementation, the role of “referee” for deciding
whether offers from parties satisfy the predefined
requirements is played by criteria policy. Like private policy,
criteria policy is also formulated as a defeasible theory. Once
the offers O1, O2, …, On, from the parties is received, the
result is the (defeasible) logical conclusion of the defeasible
theory obtained from the union of the criteria policy and O1,
O2, …, On. Elements of the above policy negotiation
implementation are summarized in Fig. 2.

We have also considered the case that negotiation can be
performed in only one round. This method can be used in the
cases that the policies of the parties allow so many alternatives
that a subset of allowable choices provides a satisfying choice
(see an example in Section III).

Fig. 1. Policy negotiation implementation.

B. Defeasible Logic
A defeasible theory [3], [4] has five different elements:
 facts,
 strict rules,
 defeasible rules,
 defeaters,
 superiority relations.
Facts are given or observed facts of a case which are

presented by (logical) literals; i.e., a variable (or atomic
formula) p or its negation ~p. We also use this convenient
notation: if q is a literal, then ~q denotes the complementary
literal (i.e., if q is a positive literal p then ~q is ~p; and if q is
~p, then ~q is p).

Strict rules are rules in the classical sense; i.e., whenever
the premises are true then so is the conclusion. For example,

penguin(X) ~flies(X).
This rule means that is “if penguin(X) is true then flies(X) is
not true” (or, in other words, “penguins don’t fly”).

Defeasible rule A

⇒ p, which means when all the literals in

A are true then normally or typically p is true but can be
defeated by contrary evidence. For example,

bird(X)

⇒ flies(X)

The meaning of this rule is that “if bird(X) is true, then we
may conclude that flies(X) is true, unless there is other
evidence, with higher priority, suggesting that it is not true”
(or, in other non-technical words, “birds typically fly”). In the
context of formulating policies, defeasible rules are used to
express alternatives and possibilities.

Defeaters A ~> p when all the literals in A are true one
should not normally conclude that p is true. These rules cannot
be used to draw any conclusions. Their only use is to block the
conclusions of defeasible rules. In other words, they are used
to defeat some defeasible rules by producing evidence to the
contrary. For example, the rule

injured(X) ~> ~flies(X)
will block a rule like bird(X)

⇒ flies(X) since the knowledge

that a bird is injured counteracts our intuition that birds usually
fly. The main point is that the information that a bird is injured
is not sufficient evidence to conclude that it does not fly. It is
only evidence against the conclusion that an injured bird flies.
In other words, we do not wish to conclude ~flies(X) if

injured(X), we simply want to prevent a conclusion flies(X).
The superiority relation among rules is used to define

priorities among rules, that is, where one rule may override the
conclusion of another rule.

C. Expressiveness of Defeasible Logic
In our implementation, we use defeasible logic for

formulating policies. The main reason is that there is a very
efficient method for finding the conclusions of defeasible
theories [4]–[6]. The defeasible framework also allows us to
express naturally the alternative choices which are common
ingredients of policies. But expressiveness of this logic is not
clear, while study has shown that the defeasible logic
framework can be utilized for a variety of applications.

For the test cases we studied, we encountered a few
concepts that do not have a natural translation into defeasible
logic; but we were able to formulate them in this framework.
As an example we present here how to introduce the
“counting” notion in defeasible logic.

D. Counting in Defeasible Logic
Using a concrete example, we will show how to implement

counting in the framework of defeasible logic.
Suppose there are thirty-six channels and each party (force)

has its own sub-list of available channels. For party A, we use
the variables ChannelA1, ChannelA2, …, ChannelA36 such
that ChannelAk is true if party A has access to channel k.
Similarly, we use the variables ChannelB1, ChannelB2, …,
ChannelB36 for party (force) B. The goal is to find out
whether there are three channels available to both parties.

We introduce the variable ChannelSatisfied which is true if
the above condition is satisfied. The defeasible rules we
introduce simulate the process of examining the channels 1, 2,
…, 36 one by one and the variable Channelk_n is true if after
examining the channels k has at least n channels available to
both parties. The rules are as follow:

R1: ChannelA1 & ChannelB1 Channel1_1
R2: Channel1_1 Channel2_1
R3: ChannelA2 & ChannelB2 Channel2_1
R4: ChannelA2 & ChannelB2 & Channel1_1

Channel2_2
R5: Channel2_1 Channel3_1
R6: Channel2_2 Channel3_2
R7: ChannelA3 & ChannelB3 Channel3_1
R8: ChannelA3 & ChannelB3 & Channel2_1

Channel3_2
R9: ChannelA3 & ChannelB3 & Channel2_2

ChannelSatisfied
R10: Channel3_1 Channel4_1
R11: Channel3_2 Channel4_2
R12: ChannelA4 & ChannelB4 Channel4_1
R13: ChannelA4 & ChannelB4 & Channel3_1

Channel4_2
R14: ChannelA4 & ChannelB4 & Channel3_2

ChannelSatisfied

Fig. 2. Elements of policy negotiation implementation.

R165: Channel34_1 Channel35_1
R166: Channel34_2 Channel35_2
R167: ChannelA35 & ChannelB35 Channel35_1
R168: ChannelA35 & ChannelB35 & Channel34_1

Channel35_2
R169: ChannelA35 & ChannelB35 & Channel34_2

ChannelSatisfied
R170: ChannelA36 & ChannelB36 & Channel35_2

ChannelSatisfied
The template of the rules associated with channel k (except

for channels 1, 2, and 36) are as follows:
Rk1: Channel(k –1)_1 Channel(k)_1
Rk2: Channel(k –1)_2 Channel(k)_2
Rk3: ChannelA(k) & ChannelB(k) Channel(k)_1
Rk4: ChannelA(k) & ChannelB(k) & Channel(k –1)_1

Channel(k)_2
Rk5: ChannelA(k) & ChannelB(k) & Channel(k –1)_2

ChannelSatisfied
Rules Rk1 and Rk2 guarantee that the number of channels

available to both parties in the range {Channel1, ..., Channel(k
–1)} is passed to this stage. Rule Rk3 guarantees that if the
Channel(k) is available to both parties then it is registered.
Rule Rk4 guarantees that if the Channel(k) is available to both
parties and there is one channel available to both parties in the
range {Channel1, ..., Channel(k –1)} then it is registered in the
range {Channel1, ..., Channel(k)} and there are two channels
available to both parties. Rule Rk5 guarantees that if the
Channel(k) is available to both parties and there are two
channels available to both parties in the range {Channel1, ...,
Channel(k –1)} then ChannelSatisfied is true.

III. USE CASE ARCHITECTURE
We provide two test cases of implementation of our method.

The setting of both cases is the same as defined here:
There are two forces, Force1 and Force2
 Mission application capacity requirements: there is a Pick

List of 36 RF channels and each force has its own sub-list
of available channels
o The goal is to find four channels available to both

forces that are also consistent with the other
requirements

 Mission reliability requirements: each force has access to
different packages of adequate IP addresses
o The requirement is that each force has access to two

IP address block
 Traffic Policy Requirements: to allow reach back and

route back traffic
 Two Paths are available: Path1, Path2
 Only one of them can be used
Based on this setting we consider two scenarios. One can be

accomplished in one round of negotiation, and the other
requires two rounds.

A. A Single Round Negotiation
In this scenario, what two parties (forces) offer is enough to

satisfy the requirements; the negotiation engine finds
(minimal) subsets for fulfilling all requirements.

The private policy of Force 1:
 Has access to the following ten acceptable channels:

Channel5, Channel7, Channel9, Channel12, Channel15,
Channel16, Channel17, Channel23, Channel25,
Channel32

 Has access to two packages of adequate IP addresses:
IPAddressOne1, IPAddressOne2

 If it has access to Video, it cannot use Voice
 If it uses Channel9, it cannot use Video
 If it uses Channel17, it cannot use Voice
 If it uses Channel32, it cannot use Voice
 If it uses Path1, it cannot use Channel9 or Channel15 or

Channel32 or IPAddressOne2
 If it uses Path2, it cannot use Channel5 or Channel17 or

Channel19 or Video
 If it uses Channel5, it cannot use IPAddressOne2
 If it uses Channel15, it cannot use IPAddressOne1
 If it uses Channel17, it cannot use IPAddressOne2
 If it uses Channe32, it cannot use IPAddressOne1

The private policy of Force 2:
 Has access to the following eleven acceptable channels:

Channel4, Channel7, Channel8, Channel9, Channel12,
Channel13, Channel16, Channel19, Channel23,
Channel25 , Channel34

 Has access to two packages of adequate IP addresses:
IPAddressTwo1, IPAddressTwo2, IPAddressTwo3

 If it has access to Video, it cannot use Voice
 If it uses Channel9 it cannot use Video
 If it uses Channel17 it cannot use Video
 If it uses Channel32 it cannot use Voice
 If it uses Path1, it cannot use Channel9 or Channel19 or

Channel25 or IPAddressTwo3
 If it uses Path2, it cannot use Channel7 or Channel16 or

Channel19 or Video
 If it uses Channel19, it cannot use IPAddressTwo2
 If it uses Channel16, it cannot use IPAddressTwo3
 If it uses Channel25, it cannot use IPAddressTwo2
 If it uses Channe34, it cannot use IPAddressTwo1
The defeasible logic formulation of Force1 policy is as

follows, where in rules R8–R17 the set is defined as
 { }

R1: ChannelSatisfied & IPSatisfied &
ConnectionSatisfied & Path Satisfied

R2: IPAddressOne1 IPSatisfied
R3: IPAddressOne2 IPSatisfied
R4: UseVoice ConnectionSatisfied
R5: UseVideo ConnectionSatisfied
R6: Path1 Path
R7: Path2 Path

R8–R17: { }

⇒ ChannelAn,

R18: { }

⇒ IPAddressOne1

R19: { }

⇒ IPAddressOne2

R20: { }

⇒ UseVoice

R21: { }

⇒ UseVideo

R22: { }

⇒ Path1

R23: { }

⇒ Path2

R24: Path1 ~> not–Path2
R25: UseVideo ~> not–UseVoice
R26: Path1 ~> not–IPAddressOne2
R27: Path2 ~> not–UseVideo
R28: ChannelA9 ~> not–UseVideo
R29: ChannelA17 ~> not–UseVoice
R30: ChannelA32 ~> not–UseVoice
R31: Path1 ~> not–ChannelA9
R32: Path1 ~> not–ChannelA15
R33: Path1 ~> not–ChannelA32
R34: Path2 ~> not–ChannelA9
R35: Path2 ~> not–ChannelA5
R36: Path2 ~> not–ChannelA17
R37: ChannelA5 ~> not–IPAddressOne2
R38: ChannelA15 ~> not–IPAddressOne1
R39: ChannelA17 ~> not–IPAddressOne2
R40: ChannelA32 ~> not–IPAddressOne1
Priority Relations: R24 > R23; R25 > R20; R26 > R19; R27

> R21; R28 > R21; R29 > R20; R30 > R20; R31 > R10; R32 >
R23; R33 > R17; R34 > R10; R35 > R8; R36 > R14; R37 >
R19; R38 > R18; R39 > R19; R40 > R18

We should add to the above rules, the rules that guarantee
four channels are available to both forces; as they are defined
in Subsection II.D.

In the above rules the variable Satisfied is true if all
requirements satisfied; and the variables ChannelSatisfied,
IPSatisfied, ConnectionSatisfied, and Path are true if the
requirements for channel, mission reliability (IP addresses),
connection (voice and video) , and traffic conditions are
satisfied, respectively. The defeasible logic translation for
Force2 is very similar.

B. A Complexity Calculation
To better understand the subtlety of the above scenario, it

would be interesting to see if we want to find the solution
through exhaustive search, how many cases we should
examine.

Each possible choice can be represented by a quadruple:
(channels, path, connection (video, voice), IPaddresses).

The number of choices of channels for Force1 and Force2 are,
respectively,

(

) and (

)

and the number of possible choices for (path, connection,
IPaddresses) for these forces are, respectively, (2, 2, 2) and (2,
2, 3). Therefore, the number of choices for Force1 and Force2

are, respectively,
 and

If these forces want to compare all their possible choices
blindly, then they have to check

cases.

We should mention that our tool solves this problem in a
fraction of a second; a testimony to the power of the defeasible
logic approach that could avoid such an exhaustive search.

C. A Two Round Negotiation
This scenario is similar to the previous one but, in this case,

what two parties (forces) offer initially is not enough for
satisfying all of the requirements. Therefore the parties need
one more round which allows passing this information to each
other and new modified offers to achieve the satisfactory
conditions. The main difference between this case and the
previous one is the initial offers supplied by the parties.

 Following the scheme of Fig. 2, we have three policies. The
defeasible logic formulation of Force1 private policy is as
follows (here again in rules R13–R22 the set is defined as
the previous case):

R1: {}

⇒ StepA0

R2: { }

⇒ ChannelA5

R3: { }

⇒ ChannelA7

R4: { }

⇒ ChannelA9

R5: { }

⇒ ChannelA12

R6: StepA0

⇒ IPAddressOne2

R7: StepA0

⇒ Routbakc1

R8: NotSatisfied

⇒ not- StepA0

R9: ConnectionNotSatisfied

⇒ Reachback1

R10: IPNotSatisfied

⇒ IPAddressOne1

R11: IPAddressOne1 & IPAddressOne2

⇒ IPSatisfied1

R12: Reachback1 & Routbakc1

⇒ ConnectionSatisfied1

R13–R22: ChannelBn

⇒ ChannelAn,

The variable StepA0 is true if it is the first round of Force1.
Therefore, the rules R2–R7 provide the initial offer of Force1.
The variable NotSatisfied in the rule R8 is true if some
requirements are not satisfied and hence it implies rounds after
the first round. The rules R9–R12 specify how to modify the
next offers when specific requirements are not satisfied. The
implication of the rules R13–R22 is that once Force2 offers a
channel which is also available to Force1, then Force1 accepts
that channel.

Force2 private policy is very similar to Force1. The
defeasible logic formulation of Criteria Policy is as follows:

R1: ChannelSatisfied & IPSatisfied &
ConnectionSatisfied & Path Satisfied

R2: IPSatisfied1 & IPSatisfied2 IPSatisfied
R3: ConnectionSatisfied1 & ConnectionSatisfied2

ConnectionSatisfied

