Dynamic Communication Resource Negotiations

Edward Chow
Farrokh Vatan
George Paloulian

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA USA

Abstract—!

Today’s advanced network management systems can automate
many aspects of the tactical networking operations within a
military domain. However, automation of joint and coalition
tactical networking across multiple domains remains challenging.
Due to potentially conflicting goals and priorities, human
agreement is often required before implementation into the
network operations. This is further complicated by incompatible
network management systems and security policies, rendering it
difficult to implement automatic network management, thus
requiring manual human intervention to the communication
protocols used at various network routers and endpoints. This
process of manual human intervention is tedious, error-prone,
and slow. In order to facilitate a better solution, we are pursuing
a technology which makes network management automated,
reliable, and fast. Automating the negotiation of the common
network communication parameters between different parties is
the subject of this paper. We present the technology that enables
inter-force dynamic communication resource negotiations to
enable ad-hoc inter-operation in the field between force domains,
without pre-planning. It also will enable a dynamic response to
changing conditions within the area of operations. Our solution
enables the rapid blending of intra-domain policies so that the
forces involved are able to inter-operate effectively without
overwhelming each other’s networks with in-appropriate or un-
warranted traffic. It will evaluate the policy rules and
configuration data for each of the domains, then generate a
compatible inter-domain policy and configuration that will
update the gateway systems between the two domains.

Keywords- Policy-Based Management; Policy Negotiation;
Network Management

L INTRODUCTION

A policy is formally defined as a collection of rules, where
each rule consists of a set of conditions and a set of actions.
The conditions define when the policy rule is activated. Once a
policy rule is activated, actions embedded in that rule may be
executed or must be executed, depending on the characteristic
of that rule.

! Portions of the research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology and was supported
in part by the Office of the Secretary of Defense Network Communication
Capability Program, under NASA prime contract NAS7-03001, Task Plan
Number 81-103508. Copyright 2012. All rights reserved.

Steve Frisbie
Zuzana Srostlik

SPAWAR Systems Center Pacific
San Diego, CA USA

Vasilios Kalomiris
Daniel Apgar

Army CERDEC S&TCD
Aberdeen Proving Ground, MD

For managing large-scale complex systems that
dynamically change their state to adapt to changes in the
application requirements, one of the promising technologies is
policy-based network management. This approach allows
dynamic modification of the policy rules without need for
human operators’ intervention. Such policy-based technology
allows automatic management of large systems and frees the
manager from monitoring the equipment and systems directly
and provides a systematic method for producing and modifying
policy rules.

The technology described in this paper is devoted to
providing a solution for one of the main challenges in network
management and communication. Since many of the tools
used by the various divisions do not have the ability to
communicate network management data with each other,
automatic network management is very difficult to implement
and manual human intervention to the communication
protocols used at various network routers and endpoints is
required. This process of manual human intervention is
tedious, error-prone, and slow. In order to facilitate a better
solution, we are pursuing a technology which makes network
management automated, reliable, and fast. Our focus is to
address the challenge of automating the negotiation of the
common network communication parameters between different
parties when they wish to communicate.

Policy negotiation is the process of determining the “best”
communication protocol that satisfies all requirements of all
parties involved. The main challenge here is how to reconcile
the wvarious (and possibly conflicting) communications
protocols used by different parties. The solution must satisfy
the requirements of all parties involved, and should achieve it
in an efficient way. Which protocols are commonly available,
and what the definition of “best” is will be dependent on the
parties involved and their individual communications priorities.
Therefore, we are looking for a solution that on one hand
should be simple and intuitive to the operator, and on the other
hand should be implemented efficiently with minimal demand
on existing operational computing equipment while complying
with current and emerging standards.

For example, the Joint Tactical Radio System (JTRS)
consists of several types of tactical radios, from hand-held
radios to vehicle and aircraft mounted systems. When multiple
forces inter-connect, a Service Level Agreement (SLA) must
be established between these forces. This SLA typically
addresses traffic shaping policies such as capacity for the other
force’s use, when their organic reach back is available and
when it is not. An SLA also addresses traffic priority schemes,
quality of services, and access control lists. The traditional
method to establish an SLA is to negotiate the operational
aspects of the agreement, followed by developing and testing
the actual system configurations. Any problems discovered
result in a re-negotiation of the operational aspects and another
cycle of development and testing. Historically, this has been a
time-consuming process that takes months or even years to
complete.

In the emerging battle field, disparate forces are expected to
be assembled and operate together in the field at a pace that
does not allow for a lengthy SLA development phase. There is
a clear need to dynamically negotiate technical parameters for a
SLA based on pre-established operational policies for the two
or more forces involved.

As for the policy negotiation problem in general, it is
known that this is an intractable problem (technically, “NP-
complete”) [1], [2]. But this fact does not rule out the existence
of efficient methods for specific classes of policies, especially
types of policies implemented in specific desired applications.
Efficient policy negotiation methods have been suggested for
some classes of policies. One method that our approach is
based on is a promising method suggested in [3] wherein
policies are represented in defeasible logic and composition is
based on rules for non-monotonic inference. In this system,
policy writers construct meta-policies describing both the
policy that they wish to enforce and relations describing their
composition preferences. These relations can indicate the
required rules, the conditions for compromising the rules, and
the precedence relation among rules.

II. APPROACH
A. General Approach

We first describe a general mechanism of negotiation. In the
beginning, each party receives a description and the subject
matter of the negotiation. Based on this information, the party
chooses an appropriate template for negotiation; and based on
this template, a suitable negotiation policy strategy will be
activated. Here the basic assumption is that each party is
equipped in advance with a repertoire of policy negotiation
strategies that can handle conceivable situations. Once a
negotiation strategy is picked the negotiation process will
start. Each round of negotiation begins with each party
offering their requirements and what they are willing to make
available to the other party. Except for the initial offer, each
offer is obtained from the logic encapsulated in the negotiation
strategy and the offers from the other parties. Once all parties
provide their offers, a test will be performed to see whether
these offers satisfy the requirements. Later we describe our
mechanism for this test. If this test fails, then there are tests to

Other parties
offer and result

Other parties

offer and result

Fig. 1. Policy negotiation implementation.

see whether the negotiation process should continue; these
tests may consist of some predetermined criteria or
specifically a bound on the number of rounds. Also in the case
that the offers do not satisfy the requirements, it is possible to
introduce some criteria for modifying the negotiation
strategies to avoid negotiation deadlock. To modify the
negotiation strategy, help from the strategy repository or
operator is possible.

To implement the above general scheme we have developed
a concrete implementation. Fig. 1 shows the flowchart of this
implementation. Each party has its own private policy that
describes its requirements, preferences, and strategy for
providing offers and revising them. In our implementation this
private policy is formulated in defeasible logic (see examples
in Section III). In our implementation the offers are
(defeasible) logical conclusions of the union of the private
policy, the results of the previous round, and the offers of
others parties. Of course, the initial offer is the conclusion of
the private policy only. To find the conclusions of defeasible
logic theory, we utilize JPL’s efficient defeasible engine, DPC
(Defeasible Policy Combination) [5], [6].

In our implementation, the role of “referee” for deciding
whether offers from parties satisfy the predefined
requirements is played by criteria policy. Like private policy,
criteria policy is also formulated as a defeasible theory. Once
the offers Oy, O,, ..., O,, from the parties is received, the
result is the (defeasible) logical conclusion of the defeasible
theory obtained from the union of the criteria policy and Oy,
0,, ..., O, Elements of the above policy negotiation
implementation are summarized in Fig. 2.

We have also considered the case that negotiation can be
performed in only one round. This method can be used in the
cases that the policies of the parties allow so many alternatives
that a subset of allowable choices provides a satisfying choice
(see an example in Section III).

* Private Policy of a party: requirements, preferences, and strategy for providing
offers and revising them

* Private Policy is formulated in defeasible logic

¢ QOfffers: logical conclusions of the union of the private policy, the result of the
previous round, and the offers of other parties

 [Initial Offer: the conclusion of the private policy only

* Criteria Policy: determines whether offers satisfy the requirements

* Result of a round of negotiation: logical conclusion of the defeasible theory
obtained from the union of the criteriapolicy and offers

Fig. 2. Elements of policy negotiation implementation.

B. Defeasible Logic

A defeasible theory [3], [4] has five different elements:

e facts,

e strict rules,

e defeasible rules,

o defeaters,

e superiority relations.

Facts are given or observed facts of a case which are
presented by (logical) literals; i.e., a variable (or atomic
formula) p or its negation ~p. We also use this convenient
notation: if ¢ is a literal, then ~¢q denotes the complementary
literal (i.e., if g is a positive literal p then ~q is ~p; and if ¢q is
~p, then ~q is p).

Strict rules are rules in the classical sense; i.e., whenever
the premises are true then so is the conclusion. For example,

penguin(X) = ~flies(X).
This rule means that is “if penguin(X) is true then flies(X) is
not true” (or, in other words, “penguins don’t fly”).

Defeasible rule A = p, which means when all the literals in

A are true then normally or typically p is true but can be
defeated by contrary evidence. For example,
bird(X) = flies(X)

The meaning of this rule is that “if bird(X) is true, then we
may conclude that flies(X) is true, unless there is other
evidence, with higher priority, suggesting that it is not true”
(or, in other non-technical words, “birds typically fly”). In the
context of formulating policies, defeasible rules are used to
express alternatives and possibilities.

Defeaters A ~> p when all the literals in 4 are true one
should not normally conclude that p is true. These rules cannot
be used to draw any conclusions. Their only use is to block the
conclusions of defeasible rules. In other words, they are used
to defeat some defeasible rules by producing evidence to the
contrary. For example, the rule

injured(X) ~> ~flies(X)
will block a rule like bird(X) = flies(X) since the knowledge
that a bird is injured counteracts our intuition that birds usually
fly. The main point is that the information that a bird is injured
is not sufficient evidence to conclude that it does not fly. It is
only evidence against the conclusion that an injured bird flies.
In other words, we do not wish to conclude ~flies(X) if

injured(X), we simply want to prevent a conclusion flies(X).

The superiority relation among rules is used to define
priorities among rules, that is, where one rule may override the
conclusion of another rule.

C. Expressiveness of Defeasible Logic

In our implementation, we use defeasible logic for
formulating policies. The main reason is that there is a very
efficient method for finding the conclusions of defeasible
theories [4]-[6]. The defeasible framework also allows us to
express naturally the alternative choices which are common
ingredients of policies. But expressiveness of this logic is not
clear, while study has shown that the defeasible logic
framework can be utilized for a variety of applications.

For the test cases we studied, we encountered a few
concepts that do not have a natural translation into defeasible
logic; but we were able to formulate them in this framework.
As an example we present here how to introduce the
“counting” notion in defeasible logic.

D. Counting in Defeasible Logic

Using a concrete example, we will show how to implement
counting in the framework of defeasible logic.

Suppose there are thirty-six channels and each party (force)
has its own sub-list of available channels. For party 4, we use
the variables ChannelAl, ChannelA2, ..., ChannelA36 such
that ChannelAk is true if party A has access to channel k.
Similarly, we use the variables ChannelB1, ChannelB2, ...,
ChannelB36 for party (force) B. The goal is to find out
whether there are three channels available to both parties.

We introduce the variable ChannelSatisfied which is true if
the above condition is satisfied. The defeasible rules we
introduce simulate the process of examining the channels 1, 2,
..., 36 one by one and the variable Channelk_n is true if after
examining the channels & has at least n channels available to
both parties. The rules are as follow:

R1: ChanneldAl & ChannelBl — Channell 1

R2: Channell 1 - Channel2 1

R3: Channeld2 & ChannelB2 — Channel2 1

R4: Channeld2 & ChannelB2 & Channell 1 -
Channel2 2

RS: Channel2 1 - Channel3 1

R6: Channel2 2 - Channel3 2

R7: ChanneldA3 & ChannelB3 — Channel3 1

R8: Channeld3 & ChannelB3 & Channel2 1 -
Channel3 2

R9: Channeld3 & ChannelB3 & Channel2 2 -
ChannelSatisfied

R10: Channel3 1 — Channel4 1

R11: Channel3 2 —» Channel4 2

R12: Channeld4 & ChannelB4 — Channel4 1

R13: Channeld4 & ChannelB4 & Channel3 1 -
Channel4d 2
R14: Channeld4 & ChannelB4 & Channel3 2 -

ChannelSatisfied

R165: Channel34 1 - Channel35 1
R166: Channel34 2 - Channel35 2
R167: ChannelA35 & ChannelB35 — Channel35 1

R168: ChanneldA35 & ChannelB35 & Channel34 1 -
Channel35 2

R169: ChanneldA35 & ChannelB35 & Channel34 2 -
ChannelSatisfied

R170: ChannelA36 & ChannelB36 & Channel35 2 -
ChannelSatisfied

The template of the rules associated with channel & (except
for channels 1, 2, and 36) are as follows:

Rk1: Channel(k—1) 1 - Channel(k) 1

Rk2: Channel(k—1) 2 —» Channel(k) 2

Rk3: ChannelA(k) & ChannelB(k) — Channel(k) 1

Rk4: ChanneldA(k) & ChannelB(k) & Channel(k —1) 1 —
Channel(k) 2

RKk5: ChannelA(k) & ChannelB(k) & Channel(k —1) 2 —
ChannelSatisfied

Rules Rkl and Rk2 guarantee that the number of channels
available to both parties in the range {Channell, ..., Channel(k
—1)} is passed to this stage. Rule Rk3 guarantees that if the
Channel(k) is available to both parties then it is registered.
Rule Rk4 guarantees that if the Channel(k) is available to both
parties and there is one channel available to both parties in the
range {Channell, ..., Channel(k —1)} then it is registered in the
range {Channell, ..., Channel(k)} and there are two channels
available to both parties. Rule Rk5 guarantees that if the
Channel(k) is available to both parties and there are two
channels available to both parties in the range {Channell, ...,
Channel(k —1)} then ChannelSatisfied is true.

III. USE CASE ARCHITECTURE

We provide two test cases of implementation of our method.
The setting of both cases is the same as defined here:
There are two forces, Forcel and Force?2
e Mission application capacity requirements. there is a Pick
List of 36 RF channels and each force has its own sub-list
of available channels
o The goal is to find four channels available to both
forces that are also consistent with the other
requirements
o Mission reliability requirements. each force has access to
different packages of adequate IP addresses
o The requirement is that each force has access to two
IP address block
e Traffic Policy Requirements: to allow reach back and
route back traffic
e Two Paths are available: Pathl, Path2
¢ Only one of them can be used
Based on this setting we consider two scenarios. One can be
accomplished in one round of negotiation, and the other
requires two rounds.

A. A Single Round Negotiation
In this scenario, what two parties (forces) offer is enough to
satisfy the requirements; the negotiation engine finds
(minimal) subsets for fulfilling all requirements.

The private policy of Force 1:

e Has access to the following ten acceptable channels:
Channel5, Channel7, Channel9, Channell2, Channell5,
Channell6, Channell7, Channel23, Channel25,
Channel32

e Has access to two packages of adequate IP addresses:
IPAddressOnel, IPAddressOne2

e If it has access to Video, it cannot use Voice

e Ifit uses Channel9, it cannot use Video

e Ifit uses Channell7, it cannot use Voice

o If it uses Channel32, it cannot use Voice

o If it uses Pathl, it cannot use Channel9 or Channell5 or
Channel32 or [PAddressOne2

o If it uses Path2, it cannot use Channel5 or Channell7 or
Channell9 or Video

e |f'it uses Channel5, it cannot use IPAddressOne2

e]fit uses Channell5, it cannot use IPAddressOnel

e Ifit uses Channell7, it cannot use IPAddressOne2

e]fit uses Channe32, it cannot use IPAddressOnel

The private policy of Force 2:

e Has access to the following eleven acceptable channels:
Channel4, Channel7, Channel8, Channel9, Channell2,
Channell3, Channell6, Channell9, Channel23,
Channel25 , Channel34

e Has access to two packages of adequate IP addresses:
IPAddressTwol, IPAddressTwo2, IPAddressTwo3

e If it has access to Video, it cannot use Voice

o Ifit uses Channel9 it cannot use Video

o Ifit uses Channell7 it cannot use Video

o If it uses Channel32 it cannot use Voice

o If it uses Pathl, it cannot use Channel9 or Channell9 or
Channel25 or IPAddressTwo3

e If it uses Path2, it cannot use Channel7 or Channell6 or
Channell9 or Video

o If it uses Channell9, it cannot use IPAddressTwo2

e |f'it uses Channell6, it cannot use IPAddressTwo3

e |f'it uses Channel25, it cannot use IPAddressTwo2

o If it uses Channe34, it cannot use IPAddressTwol

The defeasible logic formulation of Forcel policy is as

follows, where in rules R8—R17 the set C; is defined as
¢, =1{5,7,9,12,15,16,17,23,25,32}:
R1: ChannelSatisfied & IPSatisfied &
ConnectionSatisfied & Path — Satisfied

R2: IPAddressOnel — I[PSatisfied

R3: IPAddressOne2 — IPSatisfied

R4: UseVoice — ConnectionSatisfied

RS: UseVideo — ConnectionSatisfied

R6: Pathl — Path

R7: Path2 — Path

R8-R17: { } = ChannelAn,
R18: { } = [PAddressOnel
R19: { } = IPAddressOne2
R20: {} = UseVoice

R21: {} = UseVideo

R22: {} = Pathl

R23: {} = Path2

R24: Pathl ~> not—Path2

R25: UseVideo ~> not—UseVoice

R26: Pathl ~> not-IPAddressOne2

R27: Path2 ~> not-UseVideo

R28: ChannelA9 ~> not-UseVideo

R29: ChannelA17 ~> not-UseVoice

R30: ChannelA32 ~> not-UseVoice

R31: Pathl ~> not—ChannelA9

R32: Pathl ~> not—ChannelA15

R33: Pathl ~> not—ChannelA32

R34: Path2 ~> not—ChannelA9

R35: Path2 ~> not—ChannelA5

R36: Path2 ~> not—ChannelA17

R37: ChannelAS5 ~> not—IPAddressOne2

R38: ChannelA15 ~> not—IPAddressOnel

R39: ChannelA17 ~> not-IPAddressOne2

R40: ChannelA32 ~> not—IPAddressOnel

Priority Relations: R24 > R23; R25 > R20; R26 > R19; R27
>R21; R28 > R21; R29 > R20; R30 > R20; R31 > R10; R32 >
R23; R33 > R17; R34 > R10; R35 > R8; R36 > R14; R37 >
R19; R38 > R18; R39 > R19; R40 > R18

We should add to the above rules, the rules that guarantee
four channels are available to both forces; as they are defined
in Subsection I1.D.

In the above rules the variable Safisfied is true if all
requirements satisfied; and the variables ChannelSatisfied,
IPSatisfied, ConnectionSatisfied, and Path are true if the
requirements for channel, mission reliability (IP addresses),
connection (voice and video) , and traffic conditions are
satisfied, respectively. The defeasible logic translation for
Force2 is very similar.

necd

B. A Complexity Calculation

To better understand the subtlety of the above scenario, it
would be interesting to see if we want to find the solution
through exhaustive search, how many cases we should
examine.

Each possible choice can be represented by a quadruple:

(channels, path, connection (video, voice), IPaddresses).
The number of choices of channels for Forcel and Force?2 are,

respectively,
(130) =120 and (131) = 165;

and the number of possible choices for (path, connection,
[Paddresses) for these forces are, respectively, (2, 2, 2) and (2,
2, 3). Therefore, the number of choices for Forcel and Force2

are, respectively,
120X 2Xx 2% 2 =960, and 165 X 2 x 2 x 3 = 1980.
If these forces want to compare all their possible choices
blindly, then they have to check
960 x 1980 = 1,900,800

cases.

We should mention that our tool solves this problem in a
fraction of a second; a testimony to the power of the defeasible
logic approach that could avoid such an exhaustive search.

C. A Two Round Negotiation

This scenario is similar to the previous one but, in this case,
what two parties (forces) offer initially is not enough for
satisfying all of the requirements. Therefore the parties need
one more round which allows passing this information to each
other and new modified offers to achieve the satisfactory
conditions. The main difference between this case and the
previous one is the initial offers supplied by the parties.

Following the scheme of Fig. 2, we have three policies. The
defeasible logic formulation of Forcel private policy is as
follows (here again in rules R13—R22 the set C; is defined as
the previous case):

R1: {} = StepA0

R2: { } = ChannelAS

R3: { } = ChannelA7

R4: { } = ChannelA9

RS: { } = Channeld12

R6: StepA0 = IPAddressOne2

R7: StepA0 = Routbakcl

R8: NotSatisfied = not- StepA0

R9: ConnectionNotSatisfied = Reachbackl

R10: IPNotSatisfied = IPAddressOnel

R11: IPAddressOnel & IPAddressOne2 = IPSatisfiedl

R12: Reachbackl & Routbakcl = ConnectionSatisfied]

R13-R22: ChannelBn = Channeldn, n € C;

The variable StepAO is true if it is the first round of Forcel.
Therefore, the rules R2—R7 provide the initial offer of Forcel.
The variable NotSatisfied in the rule R8 is true if some
requirements are not satisfied and hence it implies rounds after
the first round. The rules R9—R12 specify how to modify the
next offers when specific requirements are not satisfied. The
implication of the rules R13—R22 is that once Force2 offers a
channel which is also available to Forcel, then Forcel accepts
that channel.

Force2 private policy is very similar to Forcel. The
defeasible logic formulation of Criteria Policy is as follows:

R1: ChannelSatisfied & IPSatisfied &
ConnectionSatisfied & Path — Satisfied

R2: [PSatisfied1 & IPSatisfied2 — IPSatisfied

R3: ConnectionSatisfiedl & ConnectionSatisfied2 —
ConnectionSatisfied

K i a7
Fig. 3. Policy negotiation tool and editor.

R4: {} = ConnectionNotSatisfied

RS5: ConnectionSatisfied ~> not-ConnectionNotSatisfied
R6: {} = IPNotSatisfied

R7: IPSatisfied ~> not-IPNotSatisfied
R8: {} = ChannelNotSatisfied

R9: ChannelSatisfied ~> not-ChannelNotSatisfied
R10: ChannelNotSatisfied — NotSatisfied
R11: IPNotSatisfied — NotSatisfied
R12: ConnectionNotSatisfied — NotSatisfied
Priority Relations: R5 > R4; R7 > R6; R9 > R8
In addition to the above rules, we should add the rules that

guarantee each force has access to four channels; as they are
defined in Subsection II.D.

E. Developing the Implementation of this Methodology as
an Executable Tool

By implementation of the methodology described in the
previous section, we have developed a policy negotiation
engine. The main elements of this implementation are:

1. A defeasible reasoner engine

1.1. Coded in C++ and C#
1.2. The input and output files are in RuleML language

2. An editor GUI for generating and testing the RuleML files

of the policies.

The reasoner (DPC) is based on algorithms described in [5],
[6]. It accepts the inputs in the form of a RuleML. As it is
described in Section II, we are using DPC not only for the
combining policies, but also for producing offers in rounds of
negotiation as logical conclusions of policies.

TABLEI
NUMBER OF THE RULES AND THE AVERAGE TIME

Number of Average Time
Rules (ms)

6 16.403

11 18.204

22 18.304

48 39.007
106 59.212
153 135.138

The policy editor (Fig. 3) GUI allows the generation of
RuleML files simply by entering rules in the form of an easy-
to-understand semi-English format. The editor also has access
to the DPC reasoner and allows the running and testing of
policies once generated or downloaded into the editor GUI.

F. Tool Performance

For benchmarking the DPC tool, we used different sized
policies (i.e., different number of rules) and applied the C++
DPC tool and recorded the (average) performance time in
milliseconds. This benchmarking is performed on a machine
running Windows7 64-bit on an Intel Core i7 CPU clocked at
2.00 GHz with 8GB of installed memory. Table I shows the
result.

REFERENCES

[1] L. Gong and X. Qian, “The Complexity and Composability of Secure
Interoperation,” in Proceedings of the IEEE Symposium on Security and
Privacy, 1994, pp. 190-200.

[2] P. McDaniel and A. Prakash, “Methods and Limitations of Security
Policy Reconciliation,” ACM Transactions on Information and System
Security, Vol. 9, No. 3, pp. 259-291, 2006.

[3] A. Lee, J. Boyer, L. Olson, and C. Gunter, “Defeasible Security Policy
Composition for Web Services,” in Proceedings of the fourth ACM
workshop on Formal Methods in Security, 2006, pp. 45-54.

[4] M. J. Maher, “Propositional defeasible logic has linear complexity,”
Theory and Practice of Logic Programming, vol. 1, no. 6, pp. 691-711,
2001.

[5] F. Vatan and J. Harman, “Efficient Web Services Policy Combination,”
NASA Tech Briefs, pp. 67-68, November 2010.

[6] F. Vatan, and J. Harman, “Efficient Web Services Policy Combination,”
JPL New Technology Report, NTR 47279, September 2009.

[7] F. Vatan, E. Chow, and G. Paloulian, “Multi-Party Policy Negotiation
Engine,” JPL New Technology Report, NTR 48042, June 2011.

[8] J. Strassner, Policy Based Network Management: Solutions for the Next
Generation, Morgan Kaufman, 2003.

[91 R. Yavatkar, D. Pendarakis, and R. Guerin, “A Framework for Policy-
based Admission Control,” RFC 2753, 2000.

