Techniques and Lessons from Fault Protection

NASA Workshop on Autonomy Validation

John C. Day
Group Supervisor, Autonomy and Fault Protection (313I)
Jet Propulsion Laboratory, California Institute of Technology
818.354.2026
John.C.Day@jpl.nasa.gov
Agenda

• Background – Description of Fault Protection

• Fault Protection Design Challenges

• Perspective #1 – Coverage of Failure Space

• Perspective #2 – Application of Diagnosis Concepts
• As used and applied at JPL, Fault Protection is both:
 – A specific SE discipline (similar to EEIS or mission planning), whose activities are separately scheduled and tracked, and
 – The elements of a system that address off-nominal behavior

• Focused on the flight system, Fault Protection includes
 – Flight system fault detection and response
 – Ground-based failure diagnosis and recovery
 – Ground-based contingency planning and action
Mission Timeline

- **Critical Activity:** Trajectory Correction Maneuver
- **Time-Critical Activity:** Deployments
- **Critical Activity:** Orbit Insertion/EDL

Flight System

- **FSW**
- **On-Board FP Autonomy**
 - **Flight Software Layer**
 - System Functions
 - Application Specific (or Subsystem-specific) Functions
 - Hardware Interface
 - **Flight Hardware Layer**
 - Redundancy
 - Cross-Strapping

Ground FDIR
- Monitor/Trend
- Diagnosis/Recovery
- Contingency Procedures
- Test-bed/Simulation

Ground System

Typical Constraints and Driving Requirements

- **Operate with Limited Ground contact**
 - Extended periods with no planned contact (1 to 4 weeks)
 - Planned contact periods may be short (1 to 2 hours)
 - Ground-based facilities may not support planned contacts (5% to 10%)
 - Large one-way light times (minutes to hours)
 - Low downlink data rates (10 to 40 bps)

- **Protect fragile elements of systems**

- **Leverage existing flight system components**

- **Protect/comlete critical activities**
 - Orbit insertion, entry/descent/landing, irreversible deployments

- **Long mission life**
 - Survive without maintenance for primary missions lasting 5-11 years

- **Harsh environments**
 - Total Ionizing Dose of 100 krad to 4 mrad
Challenges and Solutions in Developing FP

• **Challenges**
 – Failure space is essentially infinite
 – Environment can differ from predictions
 – Limited physical redundancy (due to constraints on mass/power/etc.)

• **Solutions**
 – Focus on “function preservation”, instead of “fault protection”
 • Finite, tractable – as opposed to infinite, unknown
 – Establish “safety nets” for core functions
 • Account for unknown failure causes in key areas
 – Design margin and flexibility into system (functional redundancy, ability to add/modify functions and allocations)
 – Limit set of failure causes assessed/covered; typical exclusions are:
 • Common-mode failures
 • Unexposed design flaws
 • Operator error
Illustration of Limiting Failure Space

Mission phases and objectives

Failure Modes

Regions covered by FP design

Exclude certain failure modes

Exclude certain mission phases or objectives
Perspective #1 – Coverage of Failure Space

• Can the coverage of “failure space” by a FP design provide insights into how to provide test coverage by a validation suite?

• FP Coverage
 – Identify “failure space” (from objectives and failure modes)
 – Define regions of failure space that will not be covered
 • Common-cause failures, design failures
 – Identify core functions, and ensure they are protected, regardless of cause (safety nets)
 – Omit particular failure cases that are low risk or exceptionally unlikely

• Validation Suite Coverage
 – Identify scenario space
 – Define regions of scenario space that will not be covered by validation
 – Identify properties of interest, and develop tests or analyses that ensure they are validated, regardless of the scenario/case
 • Use performance of core function as criteria?
 – Omit particular scenarios that are low risk or exceptionally unlikely
Perspective #2 – Application of Diagnosis

• Diagnosis is a class of functions that, based on detected anomalies, determines whether the anomaly is evidence of:
 – A previously-unobserved failure, or
 – An incorrect expectation of behavior
• A successful diagnosis also provides the location of and reason for the detected anomaly
• Changes to the system or system model can then be made to react to the anomaly

• Can this view of diagnosis be applied to constructing a validation suite?
• If validation can be accurately construed as “does a system perform as expected?”, then diagnosis can be used as real-time validation of system performance.
 – Answers the “why” question when an anomaly occurs
• In system validation, need to determine whether the anomaly is evidence of:
 – A previously-unobserved failure, or
 – An incorrect expectation of behavior
• A successful diagnosis also provides the location of and reason for the detected anomaly
• For identified instances of unexpected performance:
 – If there is a flaw in the system, it needs to be repaired, mitigated, or used as-is
 – If there is an error in the expectations, then either changes to the current scenario are needed, and/or new scenarios included
 – Use protection of core function as a criterion for changes
BACKUP
Covering the “Failure Space”

Top-down assessment

- **FP necessary to maintain acceptable functionality for each identified failure scenario**
 - for each failure scenario, assess effectiveness
 - for each failure effect, assess relevant mission phases/activities; add identified hazards
 - for each failure mode, identify failure effects

Bottom-up assessment

1. **analyze set of failure scenarios**
2. **determine set of failure scenarios**
3. **determine set of failure effects**
4. **determine fault set**

5. **FP necessary to maintain acceptable functionality through all mission phases**

6. **analyse set of success scenarios**
7. **determine states associated with each function**
8. **determine acceptable ranges**
9. **determine the acceptable values of each state for relevant mission phases/activities (goals); acceptable values may change over course of mission**
10. **for each mission phase/activity, determine FDIR necessary to maintain acceptable function**

FP necessary to maintain acceptable functionality for each identified failure scenario

11. **determine system functions**
12. **determine acceptable ranges**
13. **identify state(s) associated with each function**
14. **functional analysis, FTA, HA, IHA**

FMEA, FTA
Progression of Anomalous/Failed States

Anomaly, no Failure
1) current value of state reaches an unexpected value
2) review of system data indicates that model/expectation is invalid, and state is expected (expectations changed) [e.g., noise in RF link due to un-modeled effect]
 • model reviewed and parameters adjusted until model predicts current behavior (e.g., if RWA unhealthy, will have larger attitude errors)
 • review of system data indicates that this is an unacceptable value (indicative of a failure; the goal is adjusted)

Anomaly, with Failure
a) current value of state unexpectedly reaches an unacceptable value
b) model reviewed and parameters adjusted until model predicts current behavior (e.g., if IMU1 unhealthy, will have attitude failure)
 • review of system data indicates that model/expectation is invalid, and state is acceptable (expectations changed)
 • recover intended functionality by restoring state to acceptable value and/or changing functional goal

Failure, no Anomaly
i. expected condition results in failure
ii. recover intended functionality by restoring state to acceptable value and/or changing functional goal
Simplified Fault Management Loop
System States – Failure Modes and Objectives

System states with identified Failure Modes (S_{FM})

System states associated with objectives (S_{OBJ})

S_{FM} \cap S_{OBJ} – FM approach can include detection of failure mode causes (TTC can be inferred from FMEA data)

S_{OBJ} \setminus S_{FM} – FM approach (if not ignored) limited to detection of anomaly in state (since no causes identified)

S_{FM} \setminus S_{OBJ} – set of “don’t care” states w.r.t. FM design?

S_{OBJ} – set of states must be assessed for compliance with failure tolerance and reliability requirements

S_{OBJ} \cap S_{FM} – FM approach can include detection of failure mode causes (TTC can be inferred from FMEA data)

S_{FM} – set of states referenced in the set of failure effects. Includes time to effect data