
Jet Propulsion Laboratory
California Institute of Technology

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

SysML-Modelica:
JPL Implementation Overview &
Specification-related Issues
Alek Kerzhner and Nicolas Rouquette
Jet Propulsion Laboratory, Caltech

With the help from:
Sebastian Herzig (Georgia Inst. Of Technology)
Stephen Forrest (MapleSoft)

August 2012
Copyright 2011, California Institute of Technology
Government Sponsorship Acknowledged

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

2

SysML / Modelica @ JPL

• Why?
– Promote model-based systems engineering practices combining:

• analytical modeling in Modelica
• descriptive modeling in SysML

– The OMG SyM specification is existence proof it can be done
• Long term: specifications are cheaper than custom technology development
• Short term: specification have bugs (just like any other kind of technology)

Modelica
Specification

Modelica MM

SysML
Spec

SysML
Profile

UML
Spec

UML
MM

realizes

extends

realizes

SysM Specification

SyM QVTO
Transformations

M2S

S2M

realizes

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

3

Specifications are practically useful

• Specification record the history of technology evolution & understanding
– Long term: specifications help guide future technology development
– Short term: specification help identify gaps in selected technologies (w.r.t some criteria)

Open Modelica MagicDraw

implements (?)

Modelica
Specification

Modelica MM

SysML
Spec

SysML
Profile

UML
Spec

UML
MM

SysM Specification

SyM QVTO
Transformations

M2S

S2M

Maple Sim

System Modeler

Dymola

implements (?)

Rhapsody

Artisan Studio

JPL Eclipse QVTO
+ JPL QVTO/MD

Eclipse QVTO

implements (?)

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

4

Original Implementation Approach

• If we apply M2S and S2M, do we get the “same thing” as the original?
• The original spec is written to map everything

– In practice, the modelica models are very large; only a subset of the
information is relevant and useful to map to SysML;

– Practical implementations of M2S + S2M will likely lose some information

A

B

C
D

A

B

C

D

Modelica SysML

A’

B’

C’

D’

M2S S2
M

Modelica

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

5

Incremental Approach with Correspondences

• The Modelica Standard Library is very large (and growing!)
• In practice, it is necessary to reuse prior Modelica/SysML mappings
• Correspondence records of Modelica/SysML mappings facilitate reuse

A

B

C

D

A’

B’

C’

D’

Modelica SysML Correspondences

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

6

Modelica Semantics Matters

• In practice, the semantics of the Modelica language becomes “visible” in
terms of, e.g., the simulator code that Modelica tools generate

• All modelica-compliant tools must agree on the meaning of source models
(e.g., A, B, C, D) – e.g., avoid the situation where we have partial
equivalence for some classes (A, B) but not others (C, D)

A

B

C

D

A’

B’

C’

D’

Modelica SysML Correspondences
Compiler, Simulator,
Code Generator, …

A”

B”

C”

D”

E”

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

7

JPL’s Compiler-style Approach:
Simplifying a complex problem into
separate, modular concerns

• Parsing: constructing the abstract syntax (graph) from the concrete syntax (text)
• Symbol resolution: mapping symbols to locations in the abstract syntax
• Type checking: verifying well-formedness of the abstract syntax

.mo

OMC
records

XMI

MS6
records

?

?

Symbol
resolution

isomorphic (?)

?

?

Correspondences

XMI XMI
XMI XMI XMI”

XMI XMI XMI’

isomorphic (?) isomorphic (?)

Symbol
resolution

Type
Checking

Type
Checking

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

8

Parsing: Metamodel Issues

• The SyM specification
currently refers to the
CLASS_EXTENDS construct

– TODO: add a reference
• The EXTENDS construct is

more generic because it can
also be used to capture the
PUBLIC/PROTECTED
aspect of an extends
statement

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

9

Parsing: Ambiguities about which Abstract
Syntax Representation is “correct”

package TestCasesReplaceable
 model BaseCorrelation
 Real x;
 Real y;
 end BaseCorrelation;

 model SpecialCorrelation2
 extends BaseCorrelation;
 equation
 y = x / 3;
 end SpecialCorrelation2;

 model UseCorrelation
 replaceable model Correlation = SpecialCorrelation;
 Correlation correlation;
 equation
 correlation.y = time;
 y = correlation.x;
 end UseCorrelation;

 model UseCorrelation2
 extends UseCorrelation(redeclare model Correlation = SpecialCorrelation2);
 end UseCorrelation2;
end TestCasesReplaceable;

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

10

Symbol Resolution: What are the rules for
the Modelica language?

• Currently, the symbol resolution rules for Modelica are specified in
English prose across the Modelica Language Reference

• Practical problems: How many rules are there? What do they mean?

package TestCasesSpc72
 model C
 parameter Real x = 2;
 replaceable package Medium = Modelica.Media.IdealGases.SingleGases.H2O;
 B b(x = x, redeclare package Medium = Medium);
 end C;
 model D
 parameter Real x = 3;
 package Medium = Modelica.Media.IdealGases.SingleGases.O2;
 C c(b(x = x, redeclare package Medium = Medium));
 end D;
 model B
 parameter Real x;
 Medium.ThermodynamicState state(p = 200000, T = 500);
 replaceable package Medium = Modelica.Media.IdealGases.SingleGases.H2O;
 Medium.SpecificHeatCapacity cp = Medium.specificHeatCapacityCp(state);
 Modelica.Blocks.Interfaces.RealOutput y = cp;
 end B;
end TestCasesSpc72;

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

11

Type Checking: Does the SyM
transformation mapping make sense?

• Where does the modelica type checking take place?
– With .mo development, it’s the .mo compiler – OK
– With SysML to Modelica transformation, it may be impractical and difficult

for end users to understand errors found in the .mo code that’s been
converted from .xmi that’s been generated by transformation…

– Obviously, it’s not necessary to do full type checking on SysML4Modelica-
profiled models but clearly there is a minimum of type checking that will be
practically very useful for end users (and expected!)

• Where are the rules for type checking Modelica specified?
– Same problem as previously described for symbol resolution rules

	SysML-Modelica:�JPL Implementation Overview & Specification-related Issues
	SysML / Modelica @ JPL
	Specifications are practically useful
	Original Implementation Approach
	Incremental Approach with Correspondences
	Modelica Semantics Matters
	JPL’s Compiler-style Approach:�Simplifying a complex problem into separate, modular concerns
	Parsing: Metamodel Issues
	Parsing: Ambiguities about which Abstract Syntax Representation is “correct”
	Symbol Resolution: What are the rules for the Modelica language?
	Type Checking: Does the SyM transformation mapping make sense?

