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ABSTRACT 

Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely 
deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing 
applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and 
are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal 
statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical 
communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, 
then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds 
(optical depth of approximately 4 or less). 
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1. INTRODUCTION 
Radiative forcing by aerosols and clouds is a key component of the global climate, and cloud responses to changing 
aerosols constitute the largest uncertainty in climate modeling.1 Especially in the Arctic, where satellites have difficulty 
identifying clouds,2 and where the long winter night prevent the year-round use of visible-wavelength, ground-based 
cloud imagers,3,4 there is a need for new remote sensing methods to measure spatial and temporal cloud distributions. 
The need for improved cloud measurements over a complete diurnal cycle and through the Polar night has been 
demonstrated using ground-based sensors and satellites.3,5-7  

To address this need, as part of a joint U.S.-Japan program to study the Arctic atmosphere, we developed a ground-
based, thermal infrared imaging system called the Infrared Cloud Imager (ICI).8-10 The ICI method relies on upward-
viewing images of downwelling atmospheric emission, recorded with a ground-based thermal infrared imaging system 
based on an uncooled microbolometer detector array. This allows long-term deployment at remote field sites, but poses 
significant challenges in establishing and maintaining an accurate radiometric calibration, as such imaging detectors have 
a response that drifts with the temperature of the focal plane array (FPA). This problem can be dealt with by deploying 
large-area blackbody sources with the instrument, but this greatly increases the size, weight, and cost of the instrument. 
Therefore, we developed methods to characterize and compensate for the FPA temperature dependence, thereby enabling 
long-term radiometric stability and accuracy.11 The 2nd-generation ICI instrument, ICI2, relies on this method to maintain 
radiometric calibration without an onboard blackbody source. The 3rd-generation ICI instrument, ICI3, uses this method 
in combination with one onboard blackbody source to achieve even tighter calibration accuracy and stability. These ICI 
systems record images of long-wave infrared emission from the atmosphere, and allow measurement of spatial and 
temporal cloud distributions.  

An important additional advantage of the ICI technique is that it generates radiometrically calibrated images, which are 
used to not only identify cloud presence, but also cloud emissivity8 and cloud optical depth (OD).10 Figure 1 shows 
examples of ICI measurements of (a) atmospheric and cloud radiance, (b) cloud presence, and (c) cloud OD. In the 
absence of knowledge of the cloud height or temperature, the ICI optical depth algorithm retrieves an upper-limit optical 
depth for clouds up to OD = 4. The retrieved value comes closer to the actual cloud optical depth as more information is 
added to the retrieval, most notably cloud height or temperature. In other words, operating the ICI alongside a LIDAR 
instrument and with a nearby radiosonde allows very accurate retrieval of cloud optical depth at the zenith, with 



degraded accuracy at other angles where the actual cloud-base height is unknown. This paper presents a preliminary 
comparison of the cloud OD values retrieved from the ICI3 instrument with simultaneous LIDAR measurements.  

    
Figure 1. ICI images of (left) radiance [W/(m2 sr)], (center) cloud map (blue=clear, red=cloud), (right) cloud optical depth.  

 

2. METHODOLOGY 
Long-wave infrared emission from clouds carries information related to the temperature and emissivity of the clouds, 
and the emissivity can be related to the OD.12,13 Figure 2 shows the relationship between cloud infrared emissivity (ε) 
and cloud visible optical depth (τ) at 0.55 µm wavelength, with the dashed line representing the equation proposed by Fu 
and Liou:12 

       𝜀 = 1− 𝑒−0.79𝜏,      (1) 

and the × symbols representing radiative transfer calculations of infrared emissivity for a database of 4500 real clouds 
whose heights and optical depths were measured by the Raman lidar at the Atmospheric Radiation Measurements 
(ARM) Program Southern Great Plains (SGP) site in Lamont, Oklahoma.14 The radiative transfer calculations were done 
with MODTRAN4 for the US76 Standard Atmosphere, and the resulting atmospheric emitted spectral radiance was 
integrated over the ICI spectral response function. The result was a simulation of the spectrally integrated radiance that 
would be observed by a ground-based, upward-viewing ICI system for the clouds originally observed at the ARM SGP 
site. Figure 2 demonstrates that equation (1) produces a good prediction of the visible cloud OD from the infrared 
emissivity (we also note that the visible OD is approximately twice the long-wave infrared OD15,16).  

 
Figure 2. Relationship between infrared cloud emissivity and visible cloud optical depth (τ), with the dashed line 
representing eq. (1) and the × symbols representing lidar measurements of visible cloud optical depth at the ARM SGP site.  
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In the absence of data about cloud height, the ICI algorithm estimates the maximum probable τ for a cloud with a given 
value of observed radiance. As indicated in Figure 3, the initial version of this algorithm used the MODTRAN4 radiative 
transfer code with the US76 Standard Atmosphere to simulate the band-averaged radiance that would be observed by a 
ground-based ICI instrument for the database of approximately 4500 clouds whose heights and optical depths were 
measured by the Raman Lidar at the ARM SGP site. This resulting database of cloud-radiances was randomly split into a 
training set and a test set. The training set was used to determine cloud emission thresholds that defined regions where 
95% of the clouds had τ less than a specified value. For example, 95% of the clouds in the training set with radiance 
between 0.86 and 1.29 W·m-2·sr-1 had τ less than 0.25, while 95% of the clouds with emission between 0.38 and 0.86 
W·m-2·sr-1 had τ less than 0.15 (the radiance values used to determine τ have had the non-cloud emission and the 
atmospheric-path attenuation removed). Unique bins were derived for each month of the year, to capture some of the 
natural climatological variability. Table 1 lists the maximum likely τ and corresponding radiance thresholds determined 
from the training set, along with the percentage of clouds from the test set that fell into each band, with the percentage of 
test clouds that were binned correctly or that had an optical depth higher than the specified maximum value (“% high”). 
These thresholds can be adjusted to suit a wide range of specific applications or geographic locations.  

    
Figure 3. Graphical depiction of the procedure used to estimate the maximum probable cloud optical depth from ICI 
measurements of cloud radiance in the absence of cloud height information.  

  

   Table 1. Visible cloud optical depth (τ) and radiance thresholds 

Threshold #        τ Threshold
W·m-2·sr-1 

 % of test 
clouds 

% correct % high 

1 τ < 0.06 0.38 14%   94% 6% 

2 τ < 0.15 0.86 17%   95% 5% 

3 τ < 0.25 1.29 14%   97% 3% 

4 τ < 0.50 2.45 20%   94% 6% 

5 τ < 1.0 3.89 18%   94% 6% 

6 τ < 2.0 6.89 13%   97% 3% 

7 τ < 3.0 12.5 3%   95% 5% 

8 τ > 3.0 > 12.5 1%   NA NA 

Total -- -- --  95% 5% 



 

Clearly, better accuracy can be obtained if the cloud altitude is either known or estimated with reasonable accuracy. In 
such a case, we follow the procedure outlined in Figure 4. The ICI radiance (after removal of clear-sky emission and path 
attenuation) is divided by the attenuation-corrected band-average blackbody radiance calculated at the cloud temperature 
(determined from the cloud height and either observation-specific radiosonde profiles or a model built from a 
climatology of radiosonde profiles). The result is the cloud emissivity averaged over the ICI spectral response function. 
This emissivity value is used with equation (1) to determine the visible cloud optical depth.  

    
Figure 4. Graphical depiction of the procedure used to estimate the cloud optical depth from ICI measurements of cloud 
radiance with cloud height information.  

As an initial validation of the ICI cloud optical depth retrievals, ICI data were compared with cloud optical depth 
estimates from the Montana State University dual-polarization lidar system.17 Lidar data were processed using two 
methods to extract the cloud optical depth18,19 Method 118 used MODTRAN and an iterative process and worked well for 
clouds with an optical depth less than approximately 2, but often did not converge for optically thicker clouds. Method 
219 used a ratio of lidar backscatter measurements above and below the cloud and worked well for clouds with an optical 
depth greater than 1 (when cloud boundaries are well determined). In the overlap region where the two methods both 
work well, they produced values with greater than 90% agreement. 

3. RESULTS 

The procedures outlined in the previous section were used to retrieve cloud optical depth from ICI measurements made 
at Bozeman, Montana, during the spring and summer of 2010. The zenith ICI cloud optical depth values were compared 
with simultaneous lidar measurements. Figure 5 shows results of such a comparison using the ICI algorithm that did not 
incorporate cloud height information. The lidar data were temporally averaged for a 10 second window when the ICI 
data were present, and the ICI data were spatially averaged over a 1° field of view centered on the zenith. As expected, 
the absolute agreement was not so good, but it was encouraging that the ICI retrievals of maximum-probable optical 
depth were above the more direct lidar measurements 92.2% of the time.  

Figure 6 shows results of a comparison using the ICI algorithm that incorporated cloud height measured by the lidar, 
along with an actual surface air temperature value and a monthly atmospheric profile model derived from radiosondes 
launched by us at Montana State University over a four-year period (i.e., we did not use radiosonde data specific to each 
cloud measurement). In this comparison, the lidar data were averaged from the results of the two lidar retrieval methods, 
but when either algorithm did not produce a good result, data from only one lidar retrieval method were used. In all 
cases, the lidar and ICI data were temporally averaged over a 5-minute period. These data exhibit a correlation 



coefficient of 0.89, a root mean square (rms) error of 0.21 optical depth, and a mean error of 0.041 optical depth. These 
promising results are plotted as a histogram of the difference of the ICI and lidar optical depths in Figure 7.  

  
Figure 5. Comparison of maximum-probable cloud optical depth retrieved from the ICI (blue line) and lidar-derived cloud 
optical depth (red line) for a variety of non-sequential observations at Bozeman, Montana during 2010.   
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Figure 6. Comparison of cloud optical depth retrieved from the ICI using the lidar-measured cloud height (blue line) and 
lidar-derived cloud optical depth (red line) for a variety of non-sequential observations at Bozeman, Montana during 2010.   

 

   

Figure 3. Histogram of the difference between ICI and lidar cloud optical depth for the data shown in Figure 6. 

 

4. CONCLUSIONS 
The ICI method can retrieve a maximum-probable cloud optical depth with modest accuracy in the absence of cloud 
height information (only 6% of test clouds had an actual optical depth higher than the ICI-derived maximum-probable 
optical depth). When lidar-derived cloud height was incorporated into a seasonal atmospheric model, ICI measurements 
agreed with lidar measurements of cloud optical depth to within ± 0.21 optical depth units, with a small bias of 0.04. 
Future work is focusing on additional refinement of the ICI retrieval algorithms, and more complete validation with an 
extended data set.  
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