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SJPL SweepSAR Concept

* The big picture: use interferometry to

Receive

detect solid-earth deformation down to >
=, \
mme-scale \
\
\
: RX signals "
* Useful for earthquake science rocessed
individually |

applications among others

* Wide swath desired to reduce temporal
baseline while maintaining near-global
coverage

Repeat-pass Differential Interferometry

* Interferometric phase is
proportional to topography ™ %
and topographic change -—

* Known topography removed
to reveal surface change
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SRl SweepSAR vs. ScanSAR

Scanning Receive
Radar antenna

Note: Transmit and Scanning Receive events
are colocated in space and time! Along-track

. X offset shown is for clarity of presentation only! Radar antenna
Transmit
Radar antenna 3
radar
pulse
. in air 1
; v

ground echo

tadar pulse in air

burst of pulses

* Resolution not limited by burst time e Return occurs within interpulse period
* Increased number of looks (no gaps)

* No subswath stitching required * Reduced range ambiguities

* Reduced along-track scalloping * On-board processing not as intensive
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~JIPL On-Board Digital Beamforming lEr

Beamformed Antenna Pattern
P(6,t) = CHys) ()W, (t) + CHp(y) (O)W,™(t) + -+ +CHy ) ()W, (1)
l |

/ / ’\
. o Channels selected by time-based function
Each term is a beamformer “tap
Time-based weighting value

Inherent antenna pattern of selected hardware channel

- Pulse n+1 return Pulse n return
3
40f
-> 30F
Pulse n+1  Pulse n
return return

* Digital beamforming enables a
smooth electronic sweep of the
receive echo

Antenna Gain (dBi)
N
2

*  Wide swath means returns last

longer than PRI o
* Need to sweep multiple returns
simultaneously _1q
* Leads to gaps in data during 6 Look Angle (deg)
transmit events
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<SPl SweepSAR Swath Gaps

*  Conventional Radar data acquisition timing — Receive Window is within the Inter-Pulse Period (IPP):
Tx, Tx, Tx,

Transmit Events ” ”
£l >» time

N pulses in the air

Receive Windows - \

* SweepSAR wide-swath data acquisition timing — Receive Window extent is longer than an IPP:
Xy Tx, TXs TXy

Transmit Events ” ” H
. T T > time

N pulses in the air L
Rx Window from Tx,_ I

L —

>

2 - >
bl P \ >
b o ' \ >
Rx Beam 1 x Beam 5 ;
Rx Beam 2 Rx Beam 6 . ;
Rx Beam 3 Rx Beam 7 . ;
Rx Bea Rx Beam 8 L ;
] i ]
Gap in RX Data B g
t — RxBeam7  — |
for Beams 3 i ~ — —
’ 8 T —
4.5 0 i o
' . P —
[ —

* The Receive channels (“Rx Beams”) that are active during a Transmit event are blanked for the
duration of the Transmit pulse, resulting in gaps in the swath
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JPL

Traditional Loopback Calibration

TXIn

I

ToADC — / \ /%7‘—<}

Y

v

ol

o

TXIn

Calibration Concept

o

@]

EY

SweepSAR Digital Calibration

To ADC —

J o

* Relaxes the isolation requirement between TX and RX

e Calibration can be done during actual receive events

1
3

2
ﬂi‘i’

» Differentiate between TX and RX changes (important for SweepSAR)

 Compensates for all changes not just temperature
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= Calibration Architecture

Three valid modes of operation

Transmit Mode Receive Mode
(
T™XIn o/g—‘ @_|> T TXIn o)é)—’. @_|> T
o A i N
: $ G Y
: C i| C

<__________j _____ 3 ——— '___," J 3 '

To ADC —] —o/o ToADc—/_\—o/O g
A g /%’—<} i < 8 z<} €7 <

e Set phase shifter values  CW tone to correct channel

Bypass Mode

— D11
: | oJ

ToADC —{ /\ —o/g—
o /%7'<I N

* Chirp estimation for data header for on-board beamforming

TXIn

AN

H<H

* Remove common parts from TX cal
e Align ADC clocks
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SRl Impact of Interferers

* Interferometry requires phase stability rather
than phase accuracy

ed Signal
Phase Error AN

Combin

* Slope of the phase error curve is important

Desired Signal

* Signal is nearly sinusoidal so bounds are similar

| PETTTTI L [ ST | TP P

{—M = -20 dBc Interferer
|—M = -30 dBc Interferer
|—M = -40 dBc Interferer
""" —M = -50 dBc Interferer [
{—M = =55 dBc Interferer -
|——M = -60 dBc Interferer
|-— Required Phase Accuracy|-

Seenen 5 TTTTSET VTP B Y Y s
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-2+ —— _30 dBc Interferer |-\ ............ ............ ...........
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-60 dBc Interferer 10

Phase Error (deg)

Magnitude of Phase Error Slope (deg)
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Phase Offset of Coherent Interferer (deg)
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JPL TX Input: Switches vs Couplers fIEF

* There is a desire to move the switches out of the primary transmit and receive paths to
increase reliability
* To do so would violate the 55 dB isolation requirement

Coupler Topology Switch Only Topology

In-path switch directly relieves dynamic range

Transmit chain needs dynamic range (DR) of 150 dB! . . :
requirements on transmit chain

o =B S gaapty
L g L e .
RN )| ©j : || ©2
: b | 1 Lo |

toanc — /N\ H 27'_<} i N — E ToADC —{ /\ 8_ /g'_<l i = ) E

Conclusion: Switch needs enough isolation to keep TX chain DR requirement to 100 dB.
(From 50 dB gain when enabled to 50 dB loss when disabled)

* Working assumption is 15 dB return loss on antenna

S. Horst
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JPL ADC Output: Switch vs Couplers [IEF

e Similar concerns during TX mode that in-path switch represents increased failure risk
* In-path switch architecture is also needed here to meet the 55 dB isolation requirement

* Furthermore, low noise linear amplifiers do not like to be DC switched...

Coupler Topology Switch Only Topology
T™XIn ¢ @—l> o ™In o)é) @_|> T
| ' oy
O% g : ;50 dBm
| | E @
L s sl i 0dBm
g O}|> : // ~N ToADc — /\ A
Toanc — /\ H & < /%7"<I T \ [, o) /%Z—< T L
N i{( =
* Receive chain needs dynamic range (DR) of 140 dB! In-path switch directly relieves dynamic range
e Can’t rely on amplifier power-down to achieve this requirements on receive chain

Conclusion: In-path switches need to be part of a multi-faceted solution to meeting the
isolation requirement

* Working assumption is 15 dB return loss on antenna
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SJFPL  Linear Amplifier Switching 'Er

* Measured recovery times on previous DC Switching Attenuator Switching

receiver prototype Control

Control

8\ Vs. %50’8_

Recovery from Attenuator Switching

* RF Choke in MMIC prevents
speedy switching

3 T
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JPL Including the Circulator IE)

 Circulator can be included in the calibration if the coupler is moved out to the antenna port
* Assuming 15 dB antenna return loss, coupler needs 60 dB isolation to meet requirements

* Technology limitation restricts couplers to around 40 dB isolation

TX In O%_ @_D +50 dBm
: OH=H

( ----------- T R T R R RN NN NY poa®
OP— +30 dBm
ToADCc — / \ HO©
%)

L
|
VWA
.---
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JPL

Ghost Image Interference

Worst Case
Distribution Network

Reflection between T/R module and Distribution
network introduce a true time-delay interferer at the

T/R Module input:

e Signal is coherent and so will not average down

e Chirpis not as bad as CW because of matched filter

S. Horst
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Max Cable Length: 80”

~

Magnitude of Phase Error Slope (deg)

Magnitude of Phase Error Slope (deg)
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N Impact of CW tone Interferer
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(a) No Atten.

(b) Single Atten.

(c) Distributed Atten.

Divider

n

L=80in

Minimizing Reflection

Mitigation Strategies:

EY

! j
| P o * Add attenuation to increase rejection of reflected signal
: (J Delay = 8.4 ns |—) : . .
- = s e Set cable lengths to avoid regions of large phase change
| : fe)
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R-20d8 | ————> | Ri-20a8 * Increase UCA output to make up for increased loss
: -21.2 dBm : :
7T Reflane pane * Improve input return loss of TRM through matching
____Ref.Plar |rin| =-28.4 dB _____
Divider 1 - I, L=80in | TRM
: J IL=1dB ;
I Delay = 8.4 ns |
: +12dBm_ | 0 dBm ° _35 : : : . .
RL=20dB | ——— 7  RL=30d8 ' RL=20dB : ; : . 1 [—Sin eAnenua‘gr
: -17.6 dBm n=12d8 : ! fDQ& | Attemfuators
———————————— o 5 : :
3_40 ............................................................................... RIS LIRS SIS PRPON SRR
|Tin| =-24.6 dB 2 | N._\. ____NoAttenuator:_ | T N
F R ‘ i Jom e [y}
Divider 1 Ref.pane i [y L=80in | Ref. Plane I TRM o
: : IL=1.2dB : QO _45 ..................................................................................
I 3(J Delay = 8.4 ns I E
=251
: +6dBm ] OdBm (@] 0 _50 ........................................................................................................................
RL=20dB ! RL=30dB i RL=30dB | RL=20dB 2
| o=bds | ASAdBm  I=6d8 =
____________ _g 55 i st e e i i s sl i l_.;_.__
67 Taget A
. Requires Distribution Amp td +31 dBm
For Ref P Ly S L) I R s s & s
or heterence. 1ljn 11+1—S T 0o 2 4 6 8 10 12 14 16 18 20
221 Attenuator Value (dB)

S. Horst
4/26/2013

This document has been reviewed for export control. Approved for public release and redistribution.

14



JPL Design Philosophy =T

Technology
Selection

Simulation
Evolution

Evolution

Hardware

Breadboard Prototype Engineering Model Flight Hardware

* Simulation is a clearinghouse for design changes developed alongside hardware

* Hardware is not dependent on simulation milestones, only informs the design

S. Horst
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JPL

Simulation Philosophy

e Simulations conducted in Agilent ADS

* Utilize hierarchy and polymorphism to tailor simulation fidelity to needs

Modeling Types

>
=
3
e Behavioral
S
o)
—
Datasheet/
Vendor
>
=
]
o
(1 :
= Measurement
oo
T
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Amplifier2

AMP1
S21=dbpolar(0,0)
S11=polar(0,0)
S22=polar(0,180)

S$12=0

NF=1 dB

TOI=49
GainCompPower=38

UIRFc MU, Output  MJp Output  IJ3 Output

g.

1\

ol NS |
T e

0 05 10 15 20 25 30
Frequency (GHz)

grabit.m mradarlib

+\»

mradarlib
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Only method supporting
statistical analysis

AmplifierS2D

AMP2

S2DFile=
SSfreg=auto
GCFreq=1257.5 MHz
VarName="voltage"
VarValue=5

AmplifierS2D

AMP2

S2DFile:
SSfreq=auto
GCFreq=1257.5 MHz
VarName="voltage"
VarValue=5
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= TX Mode Simulations
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RX Mode Simulations
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Signal Power (dBm)
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Summary

Proposed T/R Modules for
L-Band InSAR Instrument

Currently developing this T/R architecture
for a proposed spaceborne L-band
interferometric SAR instrument

Features 12 T/R modules per polarization

Direct digitization of each L-band channel via
undersampling ADCs

12 m deployed reflector produces a 230 km
swath, permitting 12-day repeat-pass times
with full global coverage

On-board digital beamforming uses 3 taps
per beam and forms 3 simultaneous swept
beams to track multiple return pulses

Closed loop calibration performed in real-
time on individual receive channels
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