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Introduction
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* Next generation synthetic aperture radar (SAR) systems:
— multiple high-power transmit modules
— wide-bandwidths
— low-cost
— SweepSAR technique

« Current technologies not suitable

— TWTs - large and require HVPS
— GaAs and LDMOS - difficult to meet bandwidth and efficiency

« GaN technology
— high breakdown voltage — high output power and efficiencies
— higher operational junction temperatures — thermal (225C)

GaN Technology allows significant performance
advantages for spaced-based SAR instruments
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SweepSAR Technique
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Receive ) )
transmit and receive

2 events are collocated

SweepSAR Technique
— increased swath and resolution
— TRM drives single feed array element

— digitally rcvrs + on-board cal = Transmit
on-orbit beamforming

\ On receive, echos of each
. array element s

. processed individually

v yielding maximum gain

Challenges:
— high rx duty cycle (near 100%)

— shorter, high peak power transmit
pulse to achieve SNR

SweepSAR requires high-power
and high efficiency PAs

GaN is a key enabling technology

On transmit, all feed array elements are &
illuminated creating the wide elevation beam y
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GaN HEMT Technology
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Wide bandgap material
— high breakdown (10 X GaAs)
— high power density (5 X GaAs)

Bandgap engineering with AlGaN / GaN layers
SiC substrate — low thermal resistance
« Low parasitic capacitance — high efficiency amplifier modes

Advanced GaN HEMTs

— field plate to control electric field on gate

2D Electron Gas
(2DEG)

Source
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Load-pull Techniques
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« Load-pull characterize non-linear device response

— presents impedances to the DUT at fundamental and harmonics
 Active load-pull uses injection amplifiers to obtain [

— closed loop uses signal from DUT

— open loop uses synchronous AWG source

* Active open loop
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“*s~.. System
— complex modulated waveforms sed > Kse |17 Tiowd
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. DUT
— harmonic control o
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— high I’
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Open loop active load pull

Closed loop active load pull
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Open Loop Active Load-pull
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 Developed by Anteverta-mw and Maury Microwave
« 4 tuning loops — source fo, load fo, 2 fo, and 3 fo

« Measurement procedure: |
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10W Device load-pull
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« 10 W packaged GaN HEMT
— Vds =28V, Idg = 100 mA

« Device measured in 50 Q) test fixture
— deembeded to device package

 Fundamental source and load
impedances at 1.25 GHz

 External biastee\ "" Ilmrl)edanlceltur;iné

_—
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RF performance

— > 40 dBm output power at fo

— 68 % PAE

— 24 and 3 harmonic > 20 dBm

Even with no harmonic control
efficiency is almost 70%

Max PAE is tradeoff between
fundamental power and lower
harmonic powers
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Harmonic control
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« Harmonic tuning
— presenting the appropriately phased 2" and 3™ harmonic impedance
— optimizes device current and voltage waveforms

T T T T PAE °/° T
« RF performance ool . o ot |
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Optimized design impedances
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Active load-pull system allows calculation
of the dynamic voltage and current .

device,

waveforms at device imrms[c'{ L
device : ds

Determine optimal device load-line
Deembed to intrinsic device plane e
— modeled package parasitics
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Load-pull modulated signals using AWGS 4

— optimize for signal bandwidth 30
— 40 MHz chirp centered at 1.235 GHz 3g|
Achieve 40 dBm output with less than &7
1 dB variation across the band %36

Can control impedances across frequency *|

34

— simulate matching networks

33

40 MHz chirp
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Matching network design
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« Matching across harmonic impedances?
— Stepped impedance microstrip line for fundamental
— Shunt capacitors to tune harmonic impedances

_ Simulation
Design

Layout / Fabrication

.‘.-..‘l"l.“.lll\\‘l-'ll
R S T S PN o S T S S L L B L L B N ‘

o QQQOOOQQQQQQQQQQQQQQQQQ

= OQOQQQOQQQOQQQQOQQQQQQQQQ

- . o0 a6
"'_’,'_,‘_','.?.,..',?,‘.','_ &

. %8
. oa
.
- % " L

© 2012 California Institute of Technology. Government sponsorship acknowledged.



Conclusions
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Demonstrated use of mixed-signal active load-pull system

Presented load-pull results of a 10W GaN HEMT amplifier
— over 76% PAE at 40 dBm output power

— low harmonic levels

Active Load pull + GaN = high performance power amplifier

— suited for demanding space applications
— efficiency, high power density, and low harmonic levels

Future work

— 120 W GaN device design

— Build input and output matching networks

— Improve accuracy for device parasitic and packages models
— Fully characterize device over chirp bandwidth

© 2012 California Institute of Technology. Government sponsorship acknowledged.





