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Abstract. Six years ago, the discovery of Rotating Radio Transients (RRATs) marked what
appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects
have been discovered in single-pulse searches of archival and new surveys. With a continual inflow
of new information about the RRAT population in the form of new discoveries, multi-frequency
follow ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of
the place in the pulsar population RRATs hold. Here we review the properties of neutron stars
discovered through single pulse searches. We first seek to clarify the definition of the term RRAT,
emphasising that “the RRAT population” encompasses several phenomenologies. A large subset
of RRATs appears to represent the tail of an extended distribution of pulsar nulling fractions
and activity cycles; these objects present several key open questions remaining in this field.
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1. The discovery of and interest in RRATs

Pulsars were originally discovered through their single pulse emission (Hewish et al.
1968). However, periodicity-based search techniques later dominated major pulsar search
efforts due to the drastic gain in sensitivity they provided to typical pulsar signals (e. g.
Manchester et al. 2001). A recent renewal of interest in single pulse searches led McLaugh-
lin et al. (2006) to uncover sporadic pulses from eleven neutron stars whose signal was not
detectable through periodicity searches in their 35-minute observations. These objects
were dubbed Rotating Radio Transients (RRATs), and since 2006, single-pulse searches
of archival and new pulsar surveys have revealed more than 60 further examples of such
objects (e. g. Deneva et al. 2009; Keane et al. 2010; Burke-Spolaor et al. 2011).

If all RRATs’ sporadically-detectable emission arises from nulling, the net Galactic
population of these objects may be equal to or greater than that of steadily-emitting
radio pulsars, generating a substantial discrepancy between neutron star birthrates and
core-collapse supernova (CCSN) rates (Keane & Kramer 2008). This has given rise to
questions about the intrinsic nature of RRATs, and how their observed behaviour may
link to other pulsar populations or to a cycle in normal pulsar evolution. Motivated
by this, below we make explicit what is meant by the term “RRAT,” and review what
studies are revealing about these objects’ relationship to other neutron star populations.

2. Defining the RRAT

2.1. RRAT as a survey definition

In recent papers reporting pulsar survey results, the most common definition of RRAT
applies to a pulsar that was discovered in single pulses, but not in the periodicity-based
search in the survey. The reasons that this may arise is: 1) A pulsar has a very high nulling
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fraction, thus a weak Fourier strength; 2) A pulsar has a pulse energy distribution with
a weak average but extended tail; or 3) The presence of radio interference has caused a
regularly-emitting pulsar’s periodicity to experience a degradation of signal strength, or
to be masked or passed over in the inspection process. Pulsars in the third category make
up a minority (�5%) of single pulse search results, and can generally be identified by
excising interference from the discovery data or obtaining cleaner follow-up observations.

We can analytically approximate what level of nulling and modulated pulsars will lead
pulsars in a survey to be considered RRATs. McLaughlin & Cordes (2003) derived the
signal-to-noise ratio found for a pulsar with unimodally and bimodally-distributed flux
in a periodicity search and single pulse search. Let us consider a pulsar with single pulses
above the survey detection threshold, where the average signal-to-noise ratio of detected
pulses is given by 〉[S/N]SP†. To be considered a RRAT, [S/N]FT must be less than the
periodicity detection threshold, mFT. Following from McLaughlin & Cordes, we derive:
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where NF is the pulsar nulling fraction, Tobs gives the observation length, P is the pulsar
period, and η and ζ are pulse-shape-dependent parameters of order �1. Similarly, a
non-nulling, modulated pulsar will be considered a RRAT if:
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where Smax is the maximum flux likely to be emitted over the observing interval (as given
by the pulse energy distribution statistics), Savg is the modified average pulse intensity
defined by McLaughlin & Cordes (2003), and [S/N]SP represents the signal-to-noise ratio
of the brightest pulse detected in the single pulse search. What is immediately notable
about these equations is that whether upon discovery a pulsar is called a “RRAT” is
dependent on the pulsar’s rotational period, and also highly survey dependent, changing
with survey observing length and assumed detection thresholds (see also Keane 2010).

2.2. Discerning RRAT types

Several methods exist to determine the underlying nature of RRATs. Perhaps the most
effective of these is in pulse energy distribution analysis (e. g. as in Keane et al. 2010,
Miller et al. in prep). This can uncover energy bimodality (implying a nulling pulsar) or
reveal distributions in energy and time that are consistent with the lognormal or power-
law distributions typically attributed to pulsars. Thus far, few analyses of such kind
have been published, and so we cannot reliably assess the percentile breakdown of the
underlying emission type of the �70 currently-identified RRATs. However, the cursory
studies of Burke-Spolaor & Bailes (2009) and deeper studies of Keane et al. (2010) have
indicated that it is likely a large fraction of RRATs are in fact undergoing nulling (or, at
least, are bimodally distributed with a low state below the detection thresholds).

3. The extreme nature of RRATs in the pulsar population

We now seek to quantify how excessive modulation and nulling are in RRATs when
compared with the distribution of these phenomena in the general pulsar population.

3.1. Pulse-to-pulse modulation

Previous studies have indicated that pulse-to-pulse energy density variations are typically
lognormally distributed (e. g. Cognard et al. 1996; Cairns et al. 2004), or follow a power-
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Figure 1. Here we show the distribution of the phase-resolved fluctuation parameter (here
equivalent to Smax/Savg) for a sample of 314 pulsars. We indicate the line above which a pulsar
might appear as a RRAT in various surveys. See Sec. 3.1 for discussion. Surveys are: Jacoby
et al. (2009), Edwards et al. (2001); HTRU South mid-lat, Burke-Spolaor et al. (2011); Parkes
Multibeam, Manchester et al. (2001). This figure was adapted from Burke-Spolaor et al. (2012).

law distribution (as with giant micropulses; Johnston & Romani 2002). Soon after the first
report of RRATs, Weltevrede et al. (2006) revealed that PSRB0656+14 has an extremely
extended lognormal tail (such that Smax/Savg ∝ 450); they noted that were the pulsar
at a greater distance, it would have been detected as a RRAT (fulfilling Eq. 2.2 above).
Recently, the first targeted measurements of single pulse energy distributions for a large
pulsar sample were reported by Burke-Spolaor et al. (2012). Their analysis suggested
that long-tailed pulsars like B0656+14 are uncommon, and that most pulsars appear to
cluster around a relatively narrow range in lognormal shape parameters.

In Figure 1, we reproduce the distribution of phase-dependent Smax/Savg measured for
that sample. Using Eq. 2.2 and mFT = 6 we have marked, for various surveys, the limit
above which a pulsar with P = 1 s and [S/N]SP = 6 will be discovered as a RRAT .
This appears to suggest that while single pulse searches may certainly uncover extremely
modulated pulsars, pulsars do not necessarily have to exhibit excessive modulation to be
found as RRATs in a search, particularly for surveys of relatively short duration.

3.2. Pulse nulling

There are three variations of nulling activity that have been recognised:
∼ “Standard” nulling (e. g. Ritchings 1976; Wang et al. 2007), in which nulling fractions

range from a few percent up to �95%, and activity timescales range seconds to minutes.
∼High-fraction nulling, i. e. as in some RRATs. Analysis of these objects indicates NFs

upwards of 99%. In objects discovered as RRATs, the typical null timescale far exceeds
that of the emitting timescale (see Fig. 2).
∼ Intermittent pulsars (Kramer et al. 2006; Camilo et al. 2012), which undergo nulling

and emission cycles on timescales of weeks to years.
The activity timescales in both null and active states appear to follow characteristic
spans for all of these variations, and some nulling appears quasi-periodic. The pulsation
rate of most RRAT discoveries tend to be reproducible between observations, and they
may also exhibit long-timescale quasi-periodicities (Palliyaguru et al. 2011).

This consistency allows a comparison of average emission/null cycle for the various
manifestations of nulling. Such an analysis was performed by Burke-Spolaor et al. (2011),
who found that the cycle times of Wang et al. (2007) nulling pulsars appear continuously

† Note that this comparison is most accurate for surveys with a Tobs similar to that of the
distribution’s sample, 9minutes; if the distribution were made from shorter/longer observations,
we would expect the distribution to extend to lower/higher values, respectively.
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Figure 2. Here we show time series for pulsars exhibiting a range of emission activity timescales
(top to bottom: Vela, PSRs J1646–6831, J1647–36, J1226–32; archival data from Edwards et
al. 2001, all panels are of equal duration). Each time series has been dedispersed using the
pulsar dispersion measure reported by the online psrcat database (Manchester et al. 2005).
The binary scale below each time series shows an estimated representation of the null/emission
state. PSRs J1226–32 and J1647–36 were reported as RRATs by Burke-Spolaor & Bailes (2009).
PSRJ1647–36 exhibits clusters of ∼5–10 pulses per activity cycle, while PSRJ1226–32 emits
singular pulses, perhaps signifying a typical emission timescale of less than the rotational period.

distributed with those of RRATs (as we would expect given Eq. 2.1). The NF � 95%
pulsars were exclusively highlighted by RRATs, with the highest exceeding 99.99%. In-
termittent pulsars yet remain isolated from short-duration null cycle pulsars. This per-
haps marks two distinct populations, however the lack of current surveys’ sensitivity to
intermediate-timescale null cycles indicates that perhaps there is yet an undiscovered
population of pulsars undergoing such nulling. It is the nature of extreme nulling pulsars
(NF > 95%) which most motivates continued observations of RRAT discoveries, and on
which we focus the remainder of this manuscript.

4. Nulling pulsars and the issue of birthrates

It is not yet known what triggers nulling activity in pulsars, and whether there is
some internal plasma/energy timescale intrinsic to the pulsar, or an external influence
like asteroid bombardment (Shannon & Cordes 2008). We have previously noted the
issue of matching neutron star birthrates with the occurrence rate of the CCSN thought
to produce pulsars; in this discourse we may find circumstantial clues to how nulling
phenomena relate to other pulsar populations.

Taking the original 11 RRATs to be nulling objects, McLaughlin et al. (2006) calculated
the implied population of Galactic pulsars to be 2–4 • 105, several times larger than the
estimates for standard pulsars (Lorimer et al. 2006). The high-nulling-fraction population
makes the largest contribution to the factor of 5–6 excess in neutron star birthrates, with
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other contributions made by radio quiescent populations such as X-ray dim isolated
neutron stars, magnetars, and central compact objects (Keane & Kramer 2008). While it
is perhaps feasible that birthrate estimates have been grossly overestimated, the CCSN
rate has been grossly underestimated, or there is a highly effective alternate source of
pulsar production, a very plausible solution to the birthrate discrepancy can be found by
drawing an evolutionary link between nulling behaviours and other neutron star varieties.

5. Extreme nulling pulsars: evolutionary clues from recent studies

5.1. Spin parameters of RRATs with high nulling fraction

It has long been debated as to whether nulling fraction correlates with any pulsar spin
parameters, particularly with P, Ṗ , or characteristic age (τc), as might be the case if
nulling is related to pulsar evolution. No definitive answer has yet been provided, par-
ticularly as nulling studies seem to disagree: Ritchings (1976) first reported a NF 〈 τ−1

c

relationship, whereas Rankin (1986) reported no clear correlation between these two pa-
rameters. Biggs (1992) subsequently reported only a weak NF–τc anti-correlation, and
that in fact a stronger anti-correlation exists between the NF and the magnetic/rotational
alignment of the pulsar beam. Most recently, Wang et al. (2007) performed a dedicated
study of nulling for pulsars in the Parkes Multibeam survey, again reporting a weak anti-
correlation of age with NF, noting that there is a higher tendency for pulsars with a high
NF (�60%) to be older than 5Myr.

Single pulse searches are intrinsically biased to discover nulling pulsars with longer
periods (Eq. 2.1), so a separate analysis of only RRATs cannot wholly inform the above
discourse. However, ongoing timing observations (McLaughlin et al. 2009; Keane et al.
2011) have shown that RRATs discoveries seem to support the Wang et al. observation
(most reported solutions show τc > a few Myr). Strikingly, the bridge in P–Ṗ space
between canonical pulsars and both magnetars and X-ray dim isolated neutron stars is
preferentially highlighted by RRAT discoveries. This seems to give a cursory indication
that extreme nulling pulsars may somehow link these populations.

5.2. PSRJ1819–1458: tying extreme nulling and magnetars?

One of the original McLaughlin et al. (2006) discoveries, PSRJ1819–1458, shows the
strongest evidence for an evolutionary tie between neutron star populations. Its estimated
surface magnetic field strength, Bsurf = 5 • 1013 G, is the highest known among RRATs,
and lies just below the lowest known magnetar Bsurf (McLaughlin et al. 2006). Dedicated
monitoring and timing of this pulsar led Lyne et al. (2009) to report the occurrence of
an “anomalous glitch” in the pulsar, where the post-glitch recovery led to a net decrease
in Ṗ , rather than the increase typically observed in glitching pulsars. The implication
of repeated occurrence of such glitches is that PSRJ1819–1458 would experience secular
migration from magnetar-like spin parameters to those of standard radio pulsars. That
PSRJ1819–1458 is currently magnetar-like is also supported by the properties of its
detection the X-ray and infrared wavebands (Reynolds et al. 2006; Rea et al. 2010).

Of course, PSRJ1819–1458 is only one example of an extreme nulling pulsar, and we
cannot presume it represents the entirety of this population. Ongoing studies will reveal
whether other objects reflect similar behaviours. Thus far only a few RRATs have been
targeted for detailed study; McLaughlin et al. (2009) have reported on six more of the
original 11 RRATs, noting that no glitches have yet been observed in these pulsars. Rea
et al. (2010) furthermore found no infrared detection in PSRJ1317-5759, and Kaplan et
al. (2009) put limits on X-rays from PSRs J0847–4316 and J1846–0257.

We can identify several points of future study that will advance our understanding
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of RRATs. In particular, targeted differentiation of modulated/nulling RRATs, and the
obtainment of timing solutions for these objects, will provide measured spin parameters,
a large number of pulse detections, and precise positions for these objects. This will lead
to NF studies that include extreme-nulling objects to search for correlations with other
neutron star properties. Further detection of (or limits on) the presence of glitches in
these objects will explore their spin evolution in comparison with canonical pulsars and
other neutron star populations. Finally, obtaining precise RRAT positions will overcome
issues of crowded high-energy fields, and may lead to further understanding of these
objects through X-ray and other high-energy detection.
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