Joseph Lazio for the DARE Team
Jet Propulsion Laboratory, California Institute of Technology &
Lunar University Network for Astrophysics Research,
NASA Lunar Science Institute
A Brief History of the Universe

Universe starts in a uniform, largely neutral state

Today, highly structure and ionized.

What happened?
Epoch of Reionization

Gunn-Peterson trough in high-z

Follow-up photometry of ULAS J1120+0641:
- $F_{\lambda,i} = (0.1 \pm 0.4) \times 10^{-17} \text{ W m}^{-2} \text{ \mu m}^{-1}$; $i_{AB} \geq 25$
- $F_{\lambda,z} = (0.6 \pm 0.2) \times 10^{-17} \text{ W m}^{-2} \text{ \mu m}^{-1}$; $z_{AB} = 24$
- $F_{\lambda,Y} = (8.1 \pm 0.4) \times 10^{-17} \text{ W m}^{-2} \text{ \mu m}^{-1}$; $Y_{AB} = 20.3$
- $F_{\lambda,J} = (6.0 \pm 0.4) \times 10^{-17} \text{ W m}^{-2} \text{ \mu m}^{-1}$; $J_{AB} = 20.2$

Mortlock et al. 2012
Becker et al. (2001)
Epoch of Reionization

Electron scattering opacity in CMB

- Thompson scattering induces polarization
- Constrain integrated electron density
- $z_{\text{ion}} = 10.8 \pm 1.4$

W. Hu

WMAP polarization
A Brief History of the Universe

Universe starts in a uniform, largely neutral state

Today, highly structure and ionized.
21-cm Hyperfine Line of Neutral Hydrogen

\[\nu_{21 \text{cm}} = 1,420, 405, 751.768 \pm 0.001 \text{ Hz} \]

Hyperfine transition of neutral hydrogen

\[\text{I}_1 \text{S}_{1/2} \rightarrow \text{n}_1 \quad \lambda = 21 \text{ cm} \]

\[\text{I}_0 \text{S}_{1/2} \rightarrow \text{n}_0 \]

Spin temperature describes relative occupation of levels

\[n_1/n_0 = 3 \exp(-h\nu_{21 \text{cm}}/kT_s) \]

Useful numbers:

- \(200 \text{ MHz} \rightarrow z = 6 \)
- \(100 \text{ MHz} \rightarrow z = 13 \)
- \(70 \text{ MHz} \rightarrow z \approx 20 \)
- \(40 \text{ MHz} \rightarrow z \approx 35 \)

- \(t_{\text{Age}}(z = 6) \approx 1 \text{ Gyr} \)
- \(t_{\text{Age}}(z = 10) \approx 500 \text{ Myr} \)
- \(t_{\text{Age}}(z = 20) \approx 150 \text{ Myr} \)

Courtesy of J. Pritchard
Neutral Hydrogen 21 cm spin-flip transition provides probe of neutral intergalactic medium before and during formation of first stars

\[\nu = 1420 \text{ MHz} / (1 + z) \]
\[\lambda = 21 \text{ cm} \ (1 + z) \]
21 cm Cosmology

\[T_\gamma \quad T_S \quad T_b \]

CMB acts as
back light

Neutral gas
imprints signal

neutral
fraction

baryon
density

spin
temperature

peculiar
velocities

brightness
temperature
(P=kT_b\Delta\nu)

\[T_b = 27x_{\text{HI}}(1 + \delta_b) \left(\frac{T_S - T_\gamma}{T_S} \right) \left(\frac{1 + z}{10} \right)^{1/2} \left[\frac{\partial_r v_r}{(1 + z)H(z)} \right]^{-1} \text{ mK} \]

spin temperature set by different mechanisms:

Radiative transitions (CMB)
Collisions
Wouthysen-Field effect

Courtesy of J. Pritchard
H I Imaging and Power Spectra

CMB

H I power spectrum

Alvarez et al.
"A great mystery now confronts us: When and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our cosmic dawn? Observations and calculations suggest that this phenomenon occurred when the universe was roughly half a billion years old, when light from the first stars was able to ionize the hydrogen gas in the universe from atoms into electrons and protons—a period known as the epoch of reionization... Astronomers must now search the sky for these infant galaxies and find out how they behaved and interacted with their surroundings."

“What were the first objects to light up the Universe and when did they do?” We can uniquely address this mystery with DARE in lunar orbit (sky-averaged 21-cm spectrum).
Dark Ages Radio Explorer

DARE’s Key Mission Design Features:
- Weak Stability Boundary (WSB) trajectory - requires less ΔV for LOI and allows a flexible launch date
- Equatorial, 200km mean orbit altitude - long-period stability
- Low inclination orbit - maximizes Earth occultation
- Baseline Mission 3 years
- Threshold Mission 1 year

![Diagram showing spacecraft orbit with Sun Direction, LOI, TCM-1, TCM-2, and 200km Orbit.}

![Graph showing frequency on the x-axis and temperature on the y-axis.}
Turning Points B, C, and D

- Measure or constrain their frequencies and amplitudes

DARE Spacecraft

Payload Dipole Antennas (4)

Spacecraft Bus

Solar Array

High-gain Antenna

Payload Antenna Support Structure

Payload Antennas Radials

θ / deg

ϕ / deg

0.2
0.4
0.6
0.8
1
Lessons from EDGES

- 10^{9-10} dynamic range difficult because of RFI => A/D converters need high bit-depths & be highly linear. Susceptible to internal clock stability errors & digital noise.

- Multipath reflections => complex spectral interference.

- Complex environment makes transferring instrument response function from lab impossible.

- Ionosphere adds significant noise at <80 MHz.

Analogous to why COBE went to space!
50 Myr since Big Bang

Portion of radio spectrum relevant for 21 cm observations of Cosmic Dawn and Dark Ages

- Yellow = reserved for radio astronomy

• Data from Radio Astronomy Explorer-2, when it passed behind the Moon, illustrating cessation of terrestrial emissions

• *Apollo* command modules lost communications when behind the Moon.
Radio Frequency Interference

Moon reflects Earth’s RFI!
Satellites visible, too
DARE’s Biggest Challenge: Foregrounds

1) Milky Way synchrotron emission + “sea” of extragalactic sources.

2) Solar system objects: Sun, Jupiter, Moon
MCMC Approach to Signal Extraction

- Input
- Recovered
 - 68% conf.
 - 95% conf.

Random walk through parameter space → unbiased, random samples of the posterior probability distribution

Alternative Signal Models

- Wide range of values for model parameters are allowed by current constraints.
- Alternative models (e.g., including decaying dark matter) may not be described well by the turning points scheme.
- Exploring alternative parametrizations.

Pritchard & Loeb (2010)
Green Bank Field Tests

- Engineering prototype was deployed at the NRAO site in Green Bank, WV.
- Recorded data for about 2 weeks.
- Initial field tests validated the performance of three stages of DARE instrument: antenna, front-end, digital spectrometer.
DARE Status & Timeline

- Proposed as a Explorer Mission in 2011 February
- Category II
- DARE Engineering prototype developed (NRAO and JPL)
- Instrument Verification Program includes the initial field tests in Green Bank, WV (Feb-Mar, 2012) as well as the DARE-ground experiment in Western Australia (Mar, 2012 onwards).
- Results from these experiments will be critical in re-proposing DARE for a SMEX mission in late 2013.
Lunar Farside

- Whole new, *unexplored* world in Earth’s backyard!
- Farside always faces away from Earth and is only pristine radio-quiet site to pursue observations of Universe’s *Cosmic Dawn*
- Farside includes the South Pole-Aitken basin – possibly the largest, deepest, & oldest impact basin in the inner solar system.
- Opportunity to demonstrate human-robotic exploration strategies needed to explore surfaces of the Moon, asteroids, & Mars.
Deployment of Kapton Film Antennas

- Metallic conductor deposited on surface of Kapton film.
- Unrolled, deployed by rover
- Operate at $\nu < 100$ MHz.
- Film tested in vacuum chamber, with thermal cycling & UV exposure similar to lunar surface conditions, & in the field.

Artists conception of roll-out Kapton film antenna on the Moon

Kapton antenna test in New Mexico

Rolling out Kapton film inside vacuum chamber with teleoperated mini-rover
Antenna Deployment
Dark Ages Radio Explorer (DARE)

DARE is designed to address:

- When did the First Stars ignite?
- When did the first accreting Black Holes turn on?
- When did Reionization begin?

DARE will accomplish this by:

- Constructing first sky-averaged spectrum of redshifted 21 cm signal at $11 < z < 35$
- Flying spacecraft in lunar orbit, collecting data above lunar farside -- only proven radio-quiet zone in inner solar system.
- Using biconical dipole antennas with smooth response function & Markov Chain Monte Carlo method to recover spectral turning points in the presence of bright foregrounds.
- Using lessons from ground-based experiments and prototyping hardware

Burns et al., 2012, Advances in Space Research, 49, 433
http://lunar.colorado.edu/dare/