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ABSTRACT  
 
A survey of artifacts seen in JAXA’s Phase Array type L-
band synthetic aperture radar (PALSAR) data over South 
America during a low solar activity year is reported in this 
paper. A significant impact on the radar data is revealed: 
about 14% of the surveyed PALSAR images (totally 
2779) are affected by the artifacts during a month and the 
artifacts occur on 74.2% of the surveyed days. The 
characteristics of the artifacts have led to a consideration 
that the artifacts are the effects of ionospheric 
scintillation. This raises not only a concern about 
scintillation effects on radar but also a question about 
active scintillation conditions during a low solar activity 
year. To assess and verify the scintillation conditions, 
GPS data collected from the constellation of 
FORMOSAT-3/COSMIC satellites and three ground-
based GPS networks are processed and analyzed. The 
GPS data provides a global context and regional dense 
coverage, respectively, of ionospheric irregularity and 
scintillation measurements. It is concluded that even 
during a low solar activity year, L-band scintillation at 
low latitudes can occur frequently and affect L-band SAR 
significantly.  

INTRODUCTION  
 
L-band spaceborne radars have been increasingly applied 
to Earth science remote sensing satellite missions in 
recent years. The launched and planned L-band systems 
include JAXA’s Phase Array type L-band Synthetic 
Aperture Radar (PALSAR) and its scheduled follow on, 
NASA’s Aquarius, Soil Moisture Active and Passive 
(SMAP), and Deformation, Ecosystem Structure and 
Dynamics of Ice (DESDynI). The science objectives of 
these missions are to provide measurements such as sea 
surface salinity, soil moisture, surface deformation, 
vegetation, ice dynamics, etc., to study and monitor 
changes of land and sea as well as climate. 
 
All these radar systems rely on L-band radio signals that 
traverse the ionosphere. Like GNSS systems, the L-band 
radar signals are also susceptible to ionospheric effects. 
The ionospheric effects on radio signals fundamentally 
include signal time delay, phase advance, Faraday 
rotation, and amplitude as well as phase scintillation. To 
the radar systems, the major concern about the 
ionospheric effects is possible artifacts and distortion in 
the Earth science images constructed based on the radar 
signals. For example, anomalous strips were found in 
PALSAR images over the Amazon region [1], and the 
feature was believed to be an effect of ionospheric 
scintillation. To interferometric synthetic aperture radar 
(InSAR) image constructions, ionospheric 
inhomogeneities of scales ranging from hundreds of 
meters to tens of kilometers along and cross the satellite 
path can also distort InSAR images [2, 3, 4, 5, 6, 7]. 



Identification and correction of ionospheric effects have 
become an important component in system design, data 
calibration, and image processing of the spaceborne L-
band radar missions. The correction of ionospheric effects 
on radar imagery requires high-resolution measurements.  
This has led to the development of techniques to measure 
ionospheric effects using radar itself. Such a new 
capability has been demonstrated for high-resolution 
ionospheric imaging in different latitude regions, 
including ionospheric inhomogeneities associated with 
auroral arcs, mid-latitude trough, traveling ionospheric 
disturbances, and plasma bubbles as well as scintillation 
[5]. 
 
In this report, we will first present a survey of artifacts 
seen in PALSAR images over South America. As 
mentioned above, similar artifacts have been reported in 
previous studies [1]. The artifacts have also been recently 
simulated using ionospheric scintillation models [6, 7]. 
Here we provide GPS measurements of ionospheric 
irregularities and scintillation as independent evidence to 
verify the cause of the radar artifacts. Following a 
summary of the survey, we will examine ionospheric 
scintillation and irregularity measurements made in the 
regions of PALSAR paths using spaceborne and ground-
based GPS receivers. 
 
A SURVEY OF ARTIFACTS IN PALSAR DATA 
 
PALSAR is one of the three major instruments carried by 
the JAXA’s Advanced Land Observing Satellite (ALOS). 
The satellite was launched in January 2006, and 
decommissioned in April 2011. The satellite was flying in 
a sun-synchronous 10AM/10PM orbit at about 690 km 
altitude.  During its five-year successful operation, ALOS 
has collected Earth image data covering 6.5 million 
scenes all over the world. The ALOS data has been used 
for disaster mitigation in regions damaged by 
earthquakes, tsunami, or typhoons, as well as for forest 
monitoring, natural environment maintenance, 
agriculture, and topographical map. 
 
The L-band (1.27 GHz) PALSAR operated in several 
modes including ScanSAR, fine resolution, and 
polarimetric mode. During the five years, the radar data 
collected along ascending orbit paths (10 PM) often show 
distinguished artifacts in low-latitude images. Figure 1 
shows such an ascending path in the South America 
region and the ground locations of 10 image frames along 
the path at about 03:19 UT on October 31, 2010. 
Examining these images, we have found that all 10 
images show artifacts, i.e., features of streaks, in the 
intensity of the images. Figure 2 presents two examples 
(the 6th and 7th image from bottom) from the 10 images. A 
couple of features are noticed besides image blurring as 
the streaks are present: (1) the streaks are aligned with the 
ambient geomagnetic field, the latter’s orientation marked 

by a red line in each image; (2) the streaks appear in fine-
resolution (kilometer to sub-kilometer) structures quasi-
periodically in the direction perpendicular to the magnetic 
field line.  
    

 
Figure 1. Locations of 10 PALSAR image frames 
along an ALOS ascending orbit path over South 
America on October 31, 2010. 
 
To investigate the phenomenon statistically, we have 
conducted a survey of the streak artifacts seen in 
PALSAR images. In this survey we examined totally 
2779 PALSAR images collected over South America 
during October 2010. A summary of the survey is shown 
in Figure 3. We have found through this survey that 14% 
of PALSAR images are contaminated by the streaks, and 
the contaminated images appear on 74.2% of the days in 
the month. The survey result brings an alarm: (1) the 
effects are quite significant and must be dealt with; (2) the 
cause of the effects must be identified.  
 

 
Figure 2. Two examples of the PALSAR images 
collected over a South America low-latitude region 
(referring to Figure 1, near 2°S, 290°E) at about 03:19 
UT on October 31, 2010. The red lines overlapped on 
the radar images indicate the orientation of the 
ambient geomagnetic field projected from 350 km 
altitude. The images show streak features that are 
aligned with the ambient geomagnetic field. 



 

 
Figure 3. A summary plot showing the surveyed 
PALSAR images collected from South America during 
October 2010. The green color marks uncontaminated 
images while the red color indicates the images 
showing streaks as shown in Figure 2. It is found in 
this survey that 14% of PALSAR images are 
contaminated by the streak artifacts during October 
2010, and the contaminated images appear on 74% of 
the days in the month.   
 
The following unique features of the streaks have led us 
to consider that the effects are due to ionospheric 
scintillation:  
(1) the streaks are aligned with the ambient geomagnetic 

field, which is consistent with our knowledge of 
ionospheric irregularities that tend to elongate along 
the magnetic field;  

(2) the streaks occur during a high season of ionospheric 
scintillation season in the region;  

The magnetic alignment of ionospheric irregularities and 
associated radar streak features have been investigated in 
a recent simulation studies [6, 7], which apply phase 
screen models and anisotropic properties to the simulated 
irregularities. The simulations were able to reproduce the 
SAR streaks using the irregularity model.  
 
However, we also notice that surveyed PLSAR data was 
collected in a low solar activity year. Figure 4 plots the 
10.7 cm solar radio flux index and the planetary magnetic 
Ap index data for September, October, and November of 
2010 (in blue). As a comparison, the same indices 11 
years ago during the last solar cycle are also provided in 
the figure (in red). Both solar and magnetic data indicate 
near solar minimum conditions when F10.7 index was 
around 80’s and Ap rarely reached 20 during the October 
(Ap ≥ 25 or 30 indicates disturbed space weather and 
magnetic conditions). It has been acknowledged based on 
decades of studies that ionospheric scintillation wouldn’t 
be so active during low solar activity years. The high 
occurrence of SAR artifacts seems contradicting our 
knowledge. In addition, the periodic streaks in the 
direction perpendicular to the ambient geomagnetic field 
have not been observed by other instruments in the past 

including ground-based all-sky cameras and incoherent 
scatter radars. Whether the fine structures (kilometer to 
sub-kilometer) in streaks are due to radar’s high-
resolution capability or they are real irregularity features 
are a puzzle. 

 
Figure 4. The 10.7 cm solar radio flux index and 
planetary magnetic Ap index during September, 
October, and November of 1999 (red) and 2010 (blue). 
 
 
Ionospheric Scintillation Measured Using GPS Radio 
Occultation Receivers onboard COSMIC Satellites 
 
To assess the high occurrence of the streaks seen in L-
band PALSAR data, we turn to GPS data. First we 
processed amplitude scintillation data collected using 
GPS radio occultation (RO) receivers onboard the 
constellation of 6 FORMOSAT-3/COSMIC low Earth 
orbiters (~800 km altitude). COSMIC (Constellation 
Observing System for Meteorology, Ionosphere and 
Climate) is a joint Taiwan and the U.S. satellite mission. 
The GPS RO receivers carried by the COSMIC satellites 
were designed by JPL and manufactured by the Broad 
Reach Engineering. The original receivers did not include 
ionospheric scintillation measurements in the receiver 
design. This capability was incorporated in a software 
update by JPL after the mission was launched. Due to the 
limitation of the original system design, the upgraded 
capability only includes a measurement of amplitude 
scintillation S4 index proxy. The algorithm of the proxy 
was jointly developed by UCAR and JPL, i.e.,  
 

Sସ = ට〈൫ܫ − തതതത〈ܫ〉〈തതതത൯ଶ〈ܫ〉  

where ܫ = ܴܵܰଶ , 〈ܫ〉 = ටଵଶ ூଶߪ + 〈ܴܵܰ〉ସ, ߪூ = ඥ〈ሺܫ −  ,〈ሻଶ〈ܫ〉
 



and SNR is L1-C/A signal to noise ratio sampled at 50 Hz,  〈ܫ〉  is 1-second averaged intensity approximately, 〈ܫ〉തതതത is 
the low-pass filtered intensity average, and S4 is measured 
for 1-second intervals. 
 
Figure 5 shows an example of S4 proxy (briefly S4 

hereafter) profile along with an electron density profile 
obtained from data collected on October 1, 2009, using a 
GPS RO receiver onboard the COSMIC-4 satellite 
tracking the GPS PRN19 satellite. Both data types are 
sampled at 1 second intervals, and the density profile is 
derived using an Abel inversion technique. The profiles 
use the altitudes of RO tracking tangent points (TP’s, the 
points closest to the center of the Earth from the radio 
path at different epochs). The labeled local times 
~20:17:23 and 20:17:31 correspond to the times of the 
maximum electron density and maximum S4, respectively 
at the TP geographic locations (~4.086°S, 37.336°E). It is 
noticed that scintillation measured using the spaceborne 
receiver shows activity in E region (~110 km) and F 
region (above ~150 km). Through examining a large 
amount S4 profiles, we have found that scintillation could 
be categorized into two types: E- and F-region 
scintillation. The E-region scintillation can be largely 
attributed to the layering change that occurs in a narrow 
altitude range, while the F-region scintillation can be 
attributed to F-region plasma irregularities that often 
range several hundreds of kilometers. We believe that F-
region irregularities may more likely cause the artifacts 
seen in the L-band radar data. This is because the radar 
signals traverses through a much large range of 
irregularities in the F region than in the E region. 
 

 
Figure 5. Electron density and scintillation S4 profiles 
obtained on October 1, 2009, using a GPS radio 
occultation receiver onboard the COSMIC-4 satellite. 
   
Based on the above assessment, we binned S4 data 
measured in each 5° × 15° region (latitude × longitude) 
through the entire globe and in the range of 150 km to 600 
km TP altitudes, using data collected from all 6 COSMIC 
satellites in the entire October 2010. In addition, the 

scintillation data is also binned in 5° × 1 hour region 
(latitude × local time). With such binned data, we 
computed scintillation occurrence rate. The rate is defined 
as the number of S4,max ≥ 0.3 events divided by the total 
number of S4 profiles in each bin, where S4,max is the 
maximum S4 in a profile. The occurrence rate is shown in 
Figures 6 and 7 for latitude vs. longitude and latitude vs. 
local time, respectively.  
 

 
Figure 6. Scintillation occurrence rate as a function of 
longitude and latitude derived from COSMIC GPS 
observations made during October 2010.  
 

 
Figure 7. Scintillation occurrence rate as a function of 
local time and latitude derived from COSMIC GPS 
observations made during October 2010.  
 
The occurrence rate derived from the COSMIC data 
shows similar scintillation patterns derived from ground-
based measurements in the past. These patterns include:  
(1) Most of L-band amplitude scintillation occurs at low 

latitudes, and the curved latitude zone of scintillation 
follows the offset between geomagnetic and 
geographic latitudes. For example, the largest offset 
is about -11 degrees near 290°E and about 11 degrees 
near 0°E (the Greenwich meridian).  



(2) L-band amplitude scintillation rarely occurs at middle 
and high latitudes. We emphasize that although L-
band amplitude scintillation does not often occur at 
high latitudes (including auroal zone and polar cap), 
phase scintillation does occur particularly under 
disturbed space weather conditions. We will not 
further discuss the polar scintillation here since it is 
out of the scope of this paper.  

(3) The low-latitude amplitude scintillation mostly 
occurs during evening hours and some activity is also 
seen in post-midnight hours. 

These patterns are consistent with past ground-based 
measurements, but the spaceborne data also covers the 
regions less accessible to ground instruments such as 
oceans. This makes a real global coverage possible and 
fills the gaps of ground-based measurements. 
 
We notice that total counts of COSMIC GPS observations 
in the longitude × latitude and local time × latitude bins of 
PALSAR observations are about 10~25 and 10~30, 
respectively. Although the samples of measurements in 
each regional bin are limited, the high occurrence of 
scintillation measured by the COSMIC constellation 
shows consistency with that of radar artifacts over South 
America.    
 
Ionospheric Irregularities Measured Using Ground-
Based GPS Networks 
 
Although the data collected from the COSMIC 
constellation provides a global context of scintillation 
activity for the concerned month of a low solar activity 
year, its regional data sampling in a short interval is very 
coarse. To investigate individual PALSAR events in 
details, we turn to measurements made using ground-
based GPS receivers of three networks in South America: 
International GNSS Service (IGS), Low-latitude 
Ionospheric Sensor Network (LISN) [8], and Scintillation 
Network Decision Aid (SINDA) [9].  
 
Although the receivers from these three networks all track 
GPS signals, the data recorded are of different types. The 
standard IGS data includes dual-frequency carrier phase 
and code pseudorange at 30-second cadence besides GPS 
satellite ephemeris. LISN is equipped with specialized 
scintillation receivers, and it records amplitude 
scintillation S4 at 1-minute cadence and standard GPS 
phase as well as code range data at 30-second cadence. 
SCINDA is also equipped with specialized scintillation 
receivers, and it collects S4 and TEC data at 1-minute 
cadence. To compare radar artifacts and GPS-based 
ionospheric irregularity/scintillation measurements seen at 
same locations at same time, we intend to maximize the 
spatial coverage density in the regions of PALSAR paths. 
This drives us to use the rate of TEC index (ROTI) 
measurements [10] that can be derived from GNSS dual-
frequency phase data. Briefly, ROTI is defined as  

 ROTI = 	ඥ〈ሺROT − 〈ROT〉ሻଶ〉,     (TECU/minute) 
 
where ROT is detrended rate of line-of-sight TEC change, 
and ROTI is at 5-minute cadence. One advantage of using 
ROTI is to map densely distributed measurements to 
ionospheric piercing points (IPP), which provides ROTI 
map of snapshot of ionospheric irregularities. An example 
of such global ROTI maps for a space weather event on 
March 9, 2012, is given in Figure 8. We would like to 
mention here that ROTI and S4 measurements are 
correlated at low latitudes based on studies of low-latitude 
ionospheric irregularities and scintillation [11].  

 
Figure 8. An example of global ROTI map produced 
at JPL using GPS data for a global snapshot of 
ionospheric irregularities. 
 
For this study, we compare ROTI data with the PALSAR 
data described in the radar data survey section (Figures 1 
and 2). Within a latitudinally bounded South America 
region as shown in Figure 8, GPS dual-frequency data 
from 12 IGS stations and 14 LISN stations accessible 
online are processed to produce ROTI measurements. 
Scintillation S4 data from 5 SCINDA stations are also 
analyzed to identify the days when scintillation and 
artifacts are seen or not in GPS and PALSAR data.  

 
Figure 8. Distribution of IGS, LISN (partial), and 
SCINDA networks in South America. 



 
Using the GPS data, we generated South America 
regional ROTI maps for every 15-minute intervals of 
October 31, 2010. Examining the ROTI maps, we have 
found increased ROTI surrounding the ALOS path before, 
during and after the time of satellite flyby at about 03:19 
UT. Figure 9 presents a snapshot of ROTI regional map 
for the 03:15 – 03:30 UT interval. To provide a non-
scintillation contrast, we also include Figure 10, which 
shows ROTI map at 12:15 – 12:30 UT when there is no 
scintillation activity in the region.  

 
Figure 9. A snapshot of ROTI regional map for the 
03:15 – 03:30 UT interval. ROTI values are color-
coded in TECU/min. A narrow strip (near ~2°S, -
70°W) represents the ALOS path at about 03:19 UT 
on October 31, 2010. Increased ROTI values indicate 
irregularity/scintillation activities in South America 
when ALOS flew by. 
 

 
Figure 10. A snapshot of ROTI regional map for the 
12:15 – 12:30 UT interval, indicating non-scintillation 
conditions in South America. ROTI values are color-
coded in TECU/min. 
 

In addition, ROTI measurements by individual receivers 
are also examined to find the correspondence of the 
location and time of the radar artifacts and ionospheric 
irregularities/scintillation. Figure 11 shows time 
sequences of ROTI and ROT measurements made along 
the radio links of receivers-to-GPS58 (space vehicle 
number) from Bogota (Colombia) and Riobamba 
(Ecuador). Relative line-of-sight TEC, elevation angles of 
observations, and tracking trajectories of IPP’s at 400 km 
are also included in the plots. The detailed examinations 
confirm the activity of ionospheric irregularities during 
PALSAR observations in the region. 
 

 
 
Figure 11. ROTI and ROT along with relative line-of-
sight TEC measured by IGS GPS receivers at Bogota 
(Colombia) and Riobamba (Ecuador). In the top 
panels, the solid circles indicate observing sites, the 
red stars indicate the observation starting points of the 
plots, and  the red lines from the stations point to 
approximately the IPP locations near the ALOS path 
(~2°S, 290°E) at about 03:19 UT (marked by red 
arrows on the bottom of the plots). 
 
 
Conclusions 
 
A survey of artifacts seen in PALSAR data has been 
performed with 2779 images collected over South 
America during October 2010. About 14% of the images 
show distinguished artifacts, i.e., streaks, and the streaks 
occur on 74.2% of the surveyed days during the month. 
The streaks are aligned with the ambient geomagnetic 
field and show quasi-periodic intensity features in the 
direction perpendicular to the geomagnetic field. The 
intensity of and the distance between the streaks in each 
image are random, and the distance ranges from sub-
kilometers to 1 or a few kilometers. The characteristics of 
the artifacts indicate that the effects are likely due to 
ionospheric scintillation.  
 
GPS L1 amplitude scintillation data (S4) and ROTI data 
collected from the 6 COSMIC satellites and three ground-



based networks are processed and analyzed to compare 
with the characteristics of PALSAR artifacts. The 
spaceborne GPS scintillation measurements provide a 
global context of ionospheric scintillation for the 
concerned month, and ground-based GPS ROTI 
measurements provide a dense regional coverage of 
ionospheric irregularity observations. The GPS data 
conforms that even during a low solar activity year, L-
band scintillation at low latitudes can occur frequently 
and affect L-band SAR significantly.  
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