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The GRAIL primary science
mission orbit experiences three
repetitions of its e-o evolution.
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Evolution is Insensitive to Initial Condition

Changes in the
initial e-w point
(marked with an x)
do not change the
major structure of
the e-w evolution.
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Three Techniques

* Lay down circles on a single propagation
— Trade maneuver frequency vs. maximum eccentricity

— Purely manual

* Center each “segment”

— Determine minimum achievable mean altitude and
periapse altitude

— Straightforward numerical process

* Optimize for AV given constraints in e-m space.
— Highly computational
— Reduction in run-time by factor of 1000.



Maneuver Freq. vs. Altitude Variation
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Changing e-» without changing period

A “Hohmann-like”
transfer to shift the
e-w evolution can
reduce the required
. AV in half relative
to a single radial
maneuver. The last
ten days of this
orbit evolution are
in red
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Centering Each Segment

Choose initial a, e, w and propagate a segment

Determine minimum circumscribing eccentricity circle.

— Center determined numerically by minimizing the maximum
distance from the center of a circle to each e-w point within the
segment

— Used centroid as initial guess

Shift e-w to place the center of the circle at the center of
e-@ space.

Ilterate until the shift is small.

Iteration Eccentricity ArgurT\ent Shift
of Periapse
1 7.917e-03 135.0
2 2.798e-03 277.6 1.028e-02
3 2.782e-03 284.3 3.269e-04
4 2.709e-03 284.7 7.523e-05
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e Can shift some segments

Optimizing AV Required

to reduce AV while
maintaining the same
maximum eccentricity
over the mission.

Method:

— Cost is the scaled change
of eccentricity vector
across maneuvers.

— Constrain segments to be
within a designated circle
in e-w space.

— Solve the sub-problem
and re-propagate with
new e-w targets until
change in cost is small.

* Take advantage of the near-
invariability of the evolution to
reduce the run-time to optimize
by a factor of 1000.

— 18 hours vs. 17,430 hours

Major Optimizer Cost Changein | Changein
Iteration Iterations Cost Cost (%)

0 N/A 135.6
1 8779 97.1 38.5 28.4%
2 3905 93.2 3.9 4.0%
3 4739 91.2 2.0 2.1%
4 7612 92.7 -1.5 -1.6%
5 5735 91.7 1.0 1.0%
6 4862 89.6 2.2 2.4%
7 4244 93.0 -3.5 -3.9%
8 7304 91.1 2.0 2.1%
9 5302 91.3 -0.2 -0.3%




Result
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Conclusions

 These were not the only techniques we used to
design the GRAIL Extended Mission.

— They do not consider topographic altitude or missed
maneuver constraints

— But they did offer a good starting point for manual
adjustments.

* Final design was within 8 m/s of the optimized
design from this paper.
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Any Questions?
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