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Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) is a new tech-
nique that takes advantage of the asymmetrical gravity field present in a three-body system
in order to perform absolute tracking of satellites using only relative satellite-to-satellite
observations. Previous studies have demonstrated LiAISON’s practical applications for
lunar missions, including a satellite in a halo orbit about either the Earth-Moon L1 or
L2 point. This paper studies the viability of applying LiAISON measurements between a
lunar halo orbiter and a satellite in a geosynchronous orbit. Simulations demonstrate that
the absolute positions and velocities of both satellites are observable using only relative
measurements with an achieved uncertainty on the order of observation noise.

Figure 1. The constellation studied in this paper includes a satellite in geosynchronous orbit and a satellite in
a halo orbit about the Earth-Moon L1 point tracking each other. The plots are visualized in the Earth-Moon
rotating coordinate frame.
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I. Introduction

Recent advances have revealed new ways to use relative satellite-to-satellite tracking (SST) data to
perform absolute navigation of one or more satellites. The Global Positioning System (GPS) has revolu-

tionized satellite navigation in low Earth orbit using SST measurements. A new technique called LiAISON
(Linked Autonomous Interplanetary Satellite Orbit Navigation) propels the successful aspects of GPS to new
orbits, including geosynchronous orbits, lunar orbits, and lunar libration orbits. Where GPS requires ground
tracking to anchor the entire constellation to the surface of the Earth, LiAISON may be used independently
of ground stations. Further, LiAISON requires as few as two cooperative satellites to be successful.

Previous research efforts have demonstrated LiAISON applied to lunar constellations, where satellites
are placed in lunar libration orbits, such as halo orbits, and/or in low lunar orbits.1–8 It has been shown
that a constellation of only two satellites, where one is in a libration orbit and one is in a low lunar orbit,
can use scalar SST measurements, such as range or range-rate, and successfully determine both their relative
and absolute positions and velocities in space over time.3 High-fidelity simulations have demonstrated
autonomous navigation that yield error uncertainties within 10 meters in position for the low lunar orbiter
and 100 meters in position for the halo orbiter without any ground-based tracking. Such simulations include
realistic schedules of measurements, permitting both satellites to perform other non-compatible tasks.

A dedicated navigation satellite in a lunar libration orbit may be employed to support numerous lunar
satellites. It is postulated that such a navigation satellite may also have periods of time when its services
are not required at the Moon. While the communication link distance is far greater, the navigation satellite
at the Moon may also be used to improve the navigation support of satellites in orbit about the Earth.

The research presented in this paper explores the application of LiAISON navigation to a new system
of two satellites, where one is in a lunar libration orbit about the Earth-Moon L1 (LL1) and the other is
in a geosynchronous (GEO) orbit, as illustrated in Figure 1. Conventional satellite navigation in GEO is
plagued by the relatively small amount of change observed over time between the satellite and any ground
station. This paper shows that LiAISON navigation not only works in this system, but offers improved
navigation accuracy for a GEO satellite, especially when compared with radiometric tracking data. A
simplified simulation of LiAISON navigation achieves absolute position uncertainties below 1 meter for both
the libration orbiter and the GEO satellite even without any ground tracking. Further efforts are required to
study the benefits of LiAISON in a high-fidelity realistic scenario,9 but the work presented here demonstrates
that the concept is successful and potentially very valuable to the satellite navigation community.

II. Background

A. Lunar LiAISON

The concept of LiAISON was first formulated in 2005 by Hill et al.1,2 Hill et al. noticed that a time-series
of scalar satellite-to-satellite tracking observations contains more information in an asymmetric force field
than they do in a symmetric force field.1 Indeed, it is well known that the time-series of relative observations
between multiple Earth orbiting satellites appears identical if the entire constellation of Earth orbiters is
rotated about the Earth, provided that the observations are not sensitive enough to notice anything more
subtle than the Earth’s point-mass gravitational field. In that case, only a subset of the constellation’s
orbital parameters may be determined using relative measurements, such as the semi-major axis of each
satellite’s orbits.10 Solar radiation pressure and the Earth’s J2 effect (or higher-order gravity terms, if the
measurements are sensitive enough) are two sources of asymmetry that may reveal more information about
the absolute locations of each satellite. The most dramatic asymmetries in the force field originate near
the Moon, where the lunar gravity significantly influences a satellite’s acceleration over time. Unique SST
signatures are easily available if one of the satellites is significantly influenced by the Moon. Of course the
observational problem returns if all satellites are deep within the Moon’s gravity field, where the Earth’s
gravity becomes a minor perturbation.

In the simplest case, one considers two satellites and their mutual SST observations. The SST observations
contain the most information if one satellite is bound to the Earth and one is bound to the Moon. A libration
orbit about LL1 or LL2 is tied to both the Earth and the Moon. Hence, if one satellite is traversing such
a libration orbit, the other satellite may be located at the Earth or the Moon or even in another libration
orbit and the formation generates unique SST signatures. Hill et al. demonstrated that the full state space
of both satellites is observable for the case that one is in a libration orbit about LL1 or LL2 and the other
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C. LunarLibrationNavigation

ThetwoArtemisspacecraftwerethefirstsatellitestotraversetrajectoriesabouttheLL1andLL2points,
arrivinginlate2010andremaininginlibrationorbitsthroughmid-2011beforedescendingtolowerlunar
orbits.16,17Theydidsousingasignificantamountofground-basedtrackingfromtheDeepSpaceNetwork
(DSN),theUniversalSpaceNetwork(USN)andtheBerkeleyGroundStation(BGS)locatedattheUniversity
ofCaliforniaatBerkeley.18,19ThenavigationdataincludedrangeandDopplerobservationsfromDSNand
USNantennaeandDopplerobservationsfromBGS.Thenominalstrategyinvolvedcollecting3.5hoursof
DSNtrackingdataeveryotherday,alternatingbetweenstationsinthenorthernandsouthernhemispheres,
two45-minutetracksofBGSdataeveryday,andone30-minutetrackofUSNdataperweek.19Navigators
wereabletodetermineeachofthesatellites’statestowithinapproximately100metersinpositionand
approximately1mm/sinvelocityatanytime.18 Eachspacecraftperformedstationkeepingmaneuvers
approximatelyonceperweekwhileinlibrationorbits,requiringapproximately0.5m/spermonthof∆V.

D. LL1–GEOLiAISONNavigation

ItisstraightforwardtoenvisionascenariowhereaGEOsatelliteandalunarlibrationorbiterareboth
beingtrackedbygroundstations,suchthatthenavigationsolutionsresultinknowledgeofbothsatellites’
stateswithinsomeuncertaintydistribution.Ifonethenintroducescrosslinkobservationsbetweenthetwo
satellites,theerrordistributionsofeachsatellitewillshrinkinthatrelativedirection,dependingonthe
qualityoftheobservations.Overtime,thiscrosslinkgeometrywillreducetheuncertaintyineachdimension
asthegeometryofthesystemevolves.Figure3illustratestwooftheinterioranglesinthetimeevolutionofa
trianglebetweentheEarth,anexampleLL1orbiter,andanexampleGEOsatellitetoillustratethestrength
ofthegeometry.TheorbitswillbedescribedinmoredetailinSectionIII.Forreference,themaximumangle
betweentwogroundstationsasviewedbythisLL1satelliteisapproximately2.3

◦:farlessthanthe7–8deg
maxangleillustratedinFigure3.Similarly,themaximumanglebetweentwogroundstationsasviewedby
aGEOsatelliteisapproximately17.2◦
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,notaccountingforgroundstationhorizonmasksandoperational
constraints.Figure3illustratesthatthecrosslinkangleshaveamuchmoredynamicrangeandshouldresult
inbetterstateobservationthanground-onlymeasurements.

Figure3. Twoanglesusefultoevaluatethestrengthoftracking measurementsbetweena GEOsatelliteand
alibrationorbiteraboutLL1:theEarth-Halo-GEOangle(top)andtheEarth-GEO-Haloangle(bottom).

Thequestionremainsifcrosslinkobservationsaresolelysufficienttogenerateabsolutenavigationofa
GEOandanLL1orbiter.Figure4illustratesthetimeseriesoftherangeandrange-ratebetweenassetsin
theEarth-Moonsystem. Onecanseethattherangeandrange-ratebetweengroundstationsandthehalo
orbiterhavelessofadynamicrangethantherangeandrange-ratebetweenaGEOsatelliteandthehalo
orbiter.HamiltonandMelbournedescribetheinformationcontentofasinglepassofDopplerdatabetween
agroundstationandadistantspacecraft.20 TheinformationcontentinasinglepassbetweenGEOand
adistantspacecraftwillbesimilar,exceptthatthebaselinedistanceisgreater,whichprovidesimproved
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geometry. Further, the GEO satellite remains in view of the Moon for much longer each day than a ground
station does. It is very easy for a GEO satellite to obtain tracking data for low elevation angles relative to
the Earth’s surface since it is far from the Earth’s surface. Therefore, it is expected that a GEO satellite’s
range or Doppler measurements of a satellite near the Moon will contain more information than a ground
station’s measurements. Analyses in Section V will study if the information content of this crosslink data
truly has sufficient information to determine the absolute states of both satellites over time.

Earth	  –	  Moon	  

Earth	  –	  Halo	  

GEO	  –	  Halo	  

DSN	  –	  Halo	  

DSN	  –	  Halo	  

GEO	  –	  Halo	  

Earth	  –	  Halo	  

Figure 4. A comparison between ground-based and GEO-based observations of a satellite in orbit about the
LL1 point.

III. Mission Concept

A mission scenario is studied here that involves two satellites: one in a geosynchronous orbit about the
Earth and another in a halo orbit about the Earth-Moon L1 point. Two perspectives of this constellation
are illustrated in Figure 1.

This particular application of LiAISON has many potential benefits. First, the lunar halo orbiter may
be able to provide navigation services for many satellites in different GEO slots simultaneously, much like
the GPS constellation for LEO orbiters. Current research is investigating the possibility of taking advantage
of the GEO orbiters’ side-lobes, so that the GEO satellites do not even have to point their communication
antenna at the halo orbiter. The communication link may not close at all points in the GEO orbit, but
concurrent research is demonstrating that only a few hours per orbit is more than sufficient to acquire good
tracking.9 Next, the geometrical information that the halo orbiter provides will significantly improve any
tracking solution produced by ground stations. The halo orbiter is an asset that is not tied to the surface – it
may be the only source of tracking data that has a variable geometry. Furthermore, the geometry sweeps out
a wide range of angles each and every day as the GEO satellite moves about its orbit. Thus, the halo orbiter
is in a great location to provide radial, in-track, and cross-track information about the GEO satellite’s orbit.

A. Lunar L1 Halo Orbit

The navigation satellite near the Moon is in a halo orbit about the Earth-Moon L1 point, similar to the
orbit that each of the Artemis spacecraft traversed in 2010 and 2011. The LL1 point is one of five Lagrange
points in the Earth-Moon system, namely, the five equilibrium points where the force of gravity of the Earth
and Moon perfectly balance in a rotating coordinate system.21 The LL1 point is located between the Earth
and the Moon, approximately 58,000 km from the Moon.

The Lagrange points, and libration orbits about them, are easily visualized and modeled in the circular
restricted three-body problem (CRTBP).21 The CRTBP models the motion of a massless particle, e.g., a
spacecraft, in the presence of two massive bodies, e.g., the Earth and the Moon, where the two massive
bodies are in circular orbits about their barycenter. The Moon’s orbit about the Earth is near circular,
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with an average eccentricity of about 0.05, which makes the CRTBP a reasonable model of the system. The
analysis presented here uses values for the gravitational parameters of the Earth and Moon of 398,600.4415
km3/s2 and 4902.80 km3/s2, respectively. The distance between the two bodies is set to 384,410 km.

A convenient frame of reference in the CRTBP is the synodic reference frame: a frame that rotates with
the motion of the two massive bodies. In the Earth-Moon system, the origin of the synodic frame is the
barycenter, the x-axis points toward the Moon, the z-axis points in the direction of the angular momentum
of the system, and the y-axis completes the right-handed coordinate frame. In this coordinate frame, the
Earth, the Moon, and the five Lagrange points hold perfectly still.

Numerous periodic and quasi-periodic orbits exist in the CRTBP.22–32 Some of the most studied orbits
include the families of halo and Lissajous orbits about the collinear Lagrange points. Figure 5 illustrates
several example Northern and Southern halo orbits about the Earth-Moon L1 and L2 points. One can see
that a satellite in one of these orbits remains tied to the Lagrange point, but extends out of the Moon’s
orbital plane. Farquhar33,34 and Clarke,35 as well as more recent studies such as Hill, et al.,3 have proposed
using these orbits as locations for communication satellites at the Moon. It is apparent that a satellite in
an orbit about L2 has a continuous view of the far side of the Moon; in addition, satellites in Southern halo
orbits have extended views of the lunar South Pole. The only drawback of these orbits is the extended link
distance: a satellite in a libration orbit is typically around 60,000 km from the surface of the Moon.

Figure 5. Example Northern and Southern halo orbits about the Earth-Moon L1 and L2 points, viewed from
above (left) and the side (right) in the Earth-Moon rotating coordinate frame.36

The Lagrange points in the CRTBP hold fixed for all time. In the real solar system, the Lagrange
points shift in position relative to the Earth and Moon, on account of the Moon’s non-circular orbit about
the Earth and other perturbations in the solar system. Similarly, a halo orbit in the CRTBP is perfectly
periodic, whereas in the real solar system it never retraces its path. Figure 6 illustrates the difference
between a halo orbit in the CRTBP and a similar quasi-halo orbit in a higher fidelity model of the solar
system, generated using the Jet Propulsion Laboratory’s DE405 Planetary and Lunar Ephemerides.37

A common procedure used to generate a quasi-halo orbit in a realistic model of the solar system, such as
JPL’s DE405 model, is to begin with an approximation and then differentially correct the trajectory in the
higher fidelity model.36,38 In this study, a series of states is generated using an analytic approximation of a
halo orbit,30,39 and those states are differentially corrected into the DE405 model using a multiple shooting
differential corrector.40,41 The result is a continuous trajectory in the realistic model of the solar system
that closely approximates a halo orbit. Table 1 captures the parameters that have been used to generate the
halo orbit used in the navigation simulations presented here.

B. Establishing the Lunar L1 Halo Orbiter

It is possible to perform a direct transfer to place the L1 orbiter in its orbit near the Moon, requiring a
launch injection C3 of approximately -2.0 km2/s2, a transfer duration of 3–5 days, and an orbit insertion
maneuver of approximately 500 m/s.36,42,43 Such a transfer is illustrated in Figure 7. Alternatively, the halo
orbiter may be placed in its orbit using a low-energy lunar transfer. A low-energy transfer requires slightly
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Trans-‐Lunar	  
Injec.on	  

Earth	   Moon	  

Lunar	  Orbit	  
Radius	  

LL1	  Halo	  
Orbit	  

Direct	  LL1	  Halo	  
Transfer	  

Figure 7. An example conventional halo transfer, which a satellite may follow to transfer to a lunar halo orbit
within approximately six days. This transfer is viewed from above in the Earth-Moon rotating frame; the
Moon’s orbital radius is shown for reference.

Earth	  

LL2	  Arrival	  

LL1	  Halo	  Arrival	  

In	  LL1	  Halo	  Orbit	  

Moon’s	  Orbit	  

Transfer	  from	  
LL2	  to	  LL1	  

Moon	  and	  Lagrange	  
points	  at	  Arrival	  

Low-‐Energy	  
Transfer	  

Sun-‐Earth	  RotaDng	  Frame	  
Viewed	  from	  above	  the	  EclipDc	  

Sun	  

Figure 8. An example low-energy lunar halo transfer, which a satellite may follow to transfer to a lunar halo
orbit for less ∆V than conventional transfers. This transfer is viewed from above in the Sun-Earth rotating
frame.

determination takes a set of observations of the spacecraft, filters them, and determines a new estimate of
the spacecraft’s trajectory based on the reference trajectory to match the truth trajectory as well as possible.

The reference trajectory is propagated using a model that approximates the dynamics driving the truth
trajectory. When performing OD on real spacecraft, the model is never perfect; the model is typically refined
to capture the dynamics down to some acceptably small acceleration level.

Most spacecraft are tracked by ground stations or other satellites using one or several different mea-
surement types. The studies presented here have generated sets of artificial tracking data that include
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instantaneous range and range-rate measurements between the GEO satellite and the lunar halo orbiter.
Realistic observations must account for the time it takes to transmit, receive, and process measurements, as
well as converting a Doppler observation into a range-rate measurement.

The process of orbit determination takes a large set of observations, each of which includes errors, and
processes them all to statistically determine the best estimate of the spacecraft’s trajectory. Each observed
measurement is compared to the expected observation, given the current best estimate of the spacecraft’s
trajectory. The observed measurement minus the expected measurement yields a residual. The goal of the
OD process is to determine the initial state of the spacecraft that minimizes the residuals using some cost
function. The most common cost function is the sum of the squares of each residual.

Before processing any observations, one must first establish an initial covariance matrix. The covariance
matrix captures the estimate of the uncertainty of each state variable at the reference epoch. The covariance
will change as measurements are processed, reflecting the additional knowledge provided by those measure-
ments. If the current estimate of the trajectory is good and the measurements do not have large errors, then
the covariance matrix will shrink, indicating an increased confidence in the state estimate.

Several algorithms are commonly used to process measurements during the orbit determination process.
A batch processor operates on all of the observations simultaneously, weighing each observation the same as
any other. When the batch processor has converged, it provides a best estimate for the state of the spacecraft
at the reference epoch and a covariance matrix to go with it. The state and covariance matrix may then be
mapped to any other time.

The conventional Kalman filter (CKF), or sequential filter behaves much like the batch processor, but it
operates on one measurement at a time instead of all measurements simultaneously. Thus, the CKF begins
with an initial estimate of the state and an initial covariance matrix at the reference epoch and then maps
them forward in time from one measurement to the next. As each observation is processed, the covariance
matrix shrinks or grows, depending on the system. The CKF and batch processor generate consistent results
for systems that have continuous dynamics..

The extended Kalman filter (EKF) is a variation of the CKF. As the EKF processes an observation, it
updates the reference trajectory using that observation. The update is proportional to the current covariance
matrix. That is, if many observations have been processed and the covariance has shrunk (indicating a good
trajectory fit), and an observation is then processed with a large residual, the reference trajectory will not
be adjusted much. But if the covariance is large, the trajectory may be adjusted more significantly. The
EKF is typically only stable after a sufficient number of observations have been processed with the CKF.

B. OD Implementation

1. The State Vector

The orbit determination process begins by selecting a set of state variables, namely the unknown variables
of interest. The state vector X in this study contains 12 variables: the positions and velocities of the GEO
and halo orbiters:

X = [ xg, yg, zg, ẋg, ẏg, żg, xh, yh, zh, ẋh, ẏh, żh ]
T
,

where the g subscript corresponds to the GEO satellite and the h subscript corresponds to the halo orbiter.
Other common state variables include the coefficient of reflectivity of each satellite, components of maneuver
executions, measurement bias values, clock offsets, etc. Some of these are included in an advanced study of
this scenario.9

2. State Dynamics

The state vector varies in time and may be written in the simple dynamical form:

Ẋ(t) = f(t,X(t)). (1)

The state vector is used to generate a reference trajectory that is near the truth trajectory. This study
considers scenarios in both the CRTBP and in the full ephemeris model of the solar system, using the
standard equations of motion for both systems.21,36 In the CRTBP, the truth dynamics are identical to the
reference dynamics. In the full ephemeris model of the solar system, the truth dynamics include point-mass
gravity potentials for the Sun, Moon, and all of the planets, whereas the reference dynamics only include
point-mass gravity potentials for the Sun, Earth, and Moon. This introduces some dynamical errors.
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The state’s propagation over time must be performed using a numerical integrator. In this study, the
integration has been performed using a Runge-Kutta DOPRI8(7)13 integrator45 with variable step size
control using a relative step tolerance of 10−14.

3. Measurements

Simulated observed measurements have been generated for this study by taking the states of the GEO and
halo satellites along the truth trajectories and computing instantaneous range and range-rate values at each
measurement time. The measurements are then corrupted by adding a constant bias and a Gaussian white-
noise. The bias represents errors in modeling the path of the signal through each antenna, which remain
fairly constant throughout any given observation arc. The white-noise corresponds to errors that fluctuate
frequently, such as temperature shifts, oscillator errors, clock errors, etc. The white-noise component is taken
from a Gaussian distribution with zero mean and a given standard deviation. The observed measurements
are given as:

YO(t) = h(t,X(t)) + ν =

[
ρ(t) + ρbias + ρnoise
ρ̇(t) + ρ̇bias + ρ̇noise

]
. (2)

Equation 2 may be related to the state vector variables via the following relationships, where these values
are all computed at some measurement time:

ρ =

√(
xh − xg

)2
+
(
yh − yg

)2
+
(
zh − zg

)2 (3)

ρ̇ =

(
xh − xg

)(
ẋh − ẋg

)
+
(
yh − yg

)(
ẏh − ẏg

)
+
(
zh − zg

)(
żh − żg

)√(
xh − xg

)2
+
(
yh − yg

)2
+
(
zh − zg

)2 (4)

When a reference trajectory is generated, a set of computed measurements are simulated by taking the
states of each satellite along the reference trajectory and computing the instantaneous range and range-rate
between them. The difference between the observed and computed measurements is equal to ε:

ε = YO − YC . (5)

The standard cost function, J , is then computed using a least-squares formulation:

J = 1/2εT ε. (6)

4. State Mappings

The OD process must be able to characterize how to change the initial state of the estimated trajectory in
order to better fit the measurement residuals and reduce the cost function J . Hence, the process requires
information about how to map a measurement residual back to the initial state vector. This mapping is
accomplished by linearizing the state dynamics about a reference trajectory. If X∗(t) is a reference trajectory
near the truth trajectory, then we can define a state deviation vector x(t) to be:

x(t) = X(t) − X∗(t). (7)

The a priori state deviation vector is then x(t), generated from an a priori state estimate at the reference
epoch X(t0). The goal of the OD process is to compute an estimated correction to the state vector x̂(t),
such that the resulting trajectory generated by a new state X̂(t0) = X(t0) + x̂(t0) reduces the measurement
residual cost function (Equation 6).

The state transition matrix, Φ, may be used to map the state deviation vector from one time to another
via the following partials:

Φ(t2, t1) =
∂X(t2)

∂X(t1)
, (8)

permitting the state deviation mapping:

x(t2) = Φ(t2, t1)x(t1). (9)
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The state transition matrix may be used to map forward or backward in time, such that

Φ(t2, t1) = Φ(t1, t2)−1. (10)

The state transition matrix may be constructed any time the reference trajectory is integrated by inte-
grating the following equation simultaneously:

Φ̇(t, t0) = A(t)Φ(t, t0), (11)

with initial condition Φ(t0, t0) = I. The matrix A(t) is equal to:

A(t) =
∂f(t,X(t))

∂X(t)
=
∂Ẋ(t)

∂X(t)
. (12)

In this study, the A(t) matrix is composed of the following pieces:

A(t) =



∂ṙg(t)
∂rg(t)

∂ṙg(t)
∂ṙg(t)

∂ṙg(t)
∂rh(t)

∂ṙg(t)
∂ṙh(t)

∂r̈g(t)
∂rg(t)

∂r̈g(t)
∂ṙg(t)

∂r̈g(t)
∂rh(t)

∂r̈g(t)
∂ṙh(t)

∂ṙh(t)
∂rg(t)

∂ṙh(t)
∂ṙg(t)

∂ṙh(t)
∂rh(t)

∂ṙh(t)
∂ṙh(t)

∂r̈h(t)
∂rg(t)

∂r̈h(t)
∂ṙg(t)

∂r̈h(t)
∂rh(t)

∂r̈h(t)
∂ṙh(t)


=



0 I 0 0

∂r̈g(t)
∂rg(t)

∂r̈g(t)
∂ṙg(t)

0 0

0 0 0 I

0 0 ∂r̈h(t)
∂rh(t)

∂r̈h(t)
∂ṙh(t)


. (13)

The simplifications shown are valid for the simulations presented here, since there are no dependencies on
the propagation of either satellite on the state of the other. The other relationships must be computed for
any given dynamical model.

5. Measurement Mappings

One can construct a linearized observation deviation vector y in much the same way as the state deviation
vector. The goal is to express the observation deviation vector as a function of the state deviation vector at
the reference epoch, namely:

y(t) = H(t)x(t0) + ε(t), (14)

where H(t) is the measurement mapping matrix and ε(t) is the observation noise at the time of the mea-
surement. Using Equation 9, this relationship may be simplified to a mapping of the observation deviation
vector to the state deviation vector at the same time:

y(t) = H(t)Φ(t0, t)x(t) + ε(t). (15)

If we then use Equation 10 and the definition

H(t) = H̃(t)Φ(t, t0), (16)

then Equation 15 becomes:
y(t) = H̃(t)x(t) + ε(t). (17)

The mapping matrix H̃(t) is constructed via the following partials:

H̃(t) =
∂h(t,X(t))

∂X(t)
. (18)

In this study, the following simplifications may be made, considering the dependencies given in Equations 3
and 4. The remainder of the partials are not shown here for brevity.

H̃(t) =

 ∂ρ(t)
∂rg(t)

0 ∂ρ(t)
∂rh(t)

0

∂ρ̇(t)
∂rg(t)

∂ρ̇(t)
∂ṙg(t)

∂ρ̇(t)
∂rh(t)

∂ρ̇(t)
∂ṙh(t)

 . (19)
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6. The Batch Processor

The batch processor accumulates numerous observations and processes them all simultaneously to produce
a correction to the state at the reference epoch. Since the mappings given above have been linearized about
the reference trajectory, the correction may not generate the optimal state. Hence, the algorithm is often
iterated until the correction is sufficiently small: typically only two or three times.

The best estimate for the state deviation vector at the reference epoch x̂(t0) is computed by solving the
normal equations:

Λx̂(t0) = N , (20)

where Λ and N are accumulated from every observation i in the following manner:

Λ = P
−1

0 +
∑
i

HT
i WiHi (21)

N = P
−1

0 x0 +
∑
i

HT
i Wiyi (22)

The best estimate state deviation vector x̂(t0) is then added to the estimated state at the reference epoch.
In these equations P 0 is the a prior variance-covariance matrix andW is the measurement weighting matrix.

7. Conventional Kalman Filter

The conventional Kalman filter generates an estimate for the state in the same manner as the batch processor,
but rather than processing all of the data simultaneously, the CKF processes one observation at a time. The
benefit is that rather than inverting one large matrix, the CKF inverts many small matrices. For the study
presented here, the conventional Kalman filter will generate the same estimate of the state in the presence
of perfect mathematics. However, machine precision changes the accuracy of the estimation.

The CKF begins with an a prior state estimate X0 with x0 = 0, an a priori covariance matrix P 0, and
a measurement weighting matrix W . It then either maps these forward in time to the first observation or
processes an observation at the initial time. If there is no observation, then x̂0 = x0 and P0 = P 0. The
CKF then moves through the observations one at a time performing two steps: the Time Update, which
propagates the state estimate and covariance to the next observation time, and the Measurement Update,
which updates the best estimate of the state deviation vector and covariance given the observation at that
time.

The Time Update equations include:

xi = Φ(ti, ti−1)x̂i−1 (23)
P i = Φ(ti, ti−1)Pi−1Φ(ti, ti−1)T (24)

The Measurement Update equations include:

Ki = P iH̃
T
i

(
H̃iP iH̃

T
i +W−1

i

)−1

(25)

x̂i = xi +Ki

(
yi − H̃ixi

)
(26)

Pi =
(
I −KiH̃i

)
P i (27)

After the final observation has been processed, then the final best estimate state deviation vector is
mapped back to the reference epoch and added to the reference state vector:

X̂(t0) = X(t0) + Φ(t0, tf )x̂(tf ). (28)

There are various techniques available to help the numerical stability of the algorithm. For instance, the
Joseph formulation may be used to prevent the covariance matrix from losing its symmetric condition:

Pi = (I −KiH̃i)P i(I −KiH̃i)
T +KiW

−1
i KT

i . (29)

One advantage of sequential algorithms such as the CKF is that it generates an update to the variance-
covariance matrix at every observation, which provides information about how the process is behaving.
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8. Extended Kalman Filter

The extended Kalman filter is a variation of the conventional Kalman filter. Where the CKF used the final
best estimate state deviation vector to update the reference state vector in Equation 28, the EKF updates the
state at each measurement update. Because of this, the state transition matrix cannot be pre-computed, but
must be generated at the time that it is needed. Another consequence of this filter is that if the covariance
matrix is too large, the reference trajectory risks departing from the truth trajectory such that the filter will
diverge. A common strategy is to process the first portion of observations using a CKF until the covariance
has shrunk, and then switch to the EKF.

9. Process Noise

One way that the Kalman filter fails is by saturating the filter. If the covariance matrix shrinks too much,
future observations will not impact the estimate of the state. This can be particularly troublesome if the
dynamics depend on a gradually changing geometry to make each state variable observable, e.g., as the halo
orbit gradually moves around its orbit. One can insert process noise into the filter in order to keep the
covariance matrix large enough such that all observations influence the estimate.

Process noise is injected into Equation 1 as follows:

Ẋ(t) = f(t,X(t),u(t)), (30)

where u(t) is a zero-mean Gaussian white noise vector. The process noise transition matrix is constructed
much like the state transition matrix:

Γ(t2, t1) =
∂X(t2)

∂u(t1)
, (31)

and Equation 9 is updated to include process noise as follows:

x(t2) = Φ(t2, t1)x(t1) + Γ(t2, t1)u(t1). (32)

The process noise covariance matrix Q(t) is introduced to the Kalman filter as a means of inflating the
covariance matrix. One first specifies an a priori matrix Q(t), which is typically a diagonal matrix with
specified σ values along the diagonal. Equation 24 is updated to include process noise:

P i = Φ(ti, ti−1)Pi−1Φ(ti, ti−1)T +Qi−1. (33)

The process noise covariance matrix is mapped through time much like the variance-covariance matrix:

Qi = Γ(ti, ti−1)Qi−1Γ(ti, ti−1)T . (34)

In this study, Γ(ti, ti−1) is a function of the duration of time since the last observation, ∆t = ti − ti−1:

Γ(ti, ti−1) =

[
∆t2/2 × I3×3

∆t/2 × I3×3

]
. (35)

C. Cramér-Rao Lower Bound

With so many orbit determination filter options and tuning parameters available, particularly with sequential
algorithms, it may not be obvious when an optimal OD configuration has been constructed. The Cramér-
Rao Lower Bound (CRLB) or Cramér-Rao inequality may be computed to measure the lower bound on
the uncertainty that a particular unbiased estimator may achieve if it is optimal.46–49 If one’s OD filter
is achieving an uncertainty in its estimates near the CRLB, then no further optimizations are necessary.
Conversely, if one’s results are far worse than the CRLB, then it may be useful to continue tuning the filter
to achieve less uncertainty in the results.

If P is the estimation error covariance matrix that corresponds to any unbiased estimator of the unknown
state parameters, and P ∗ is the CRLB, then one may state:

P ≥ P ∗ ≡ J−1,

where J is the Fisher information matrix. Fortunately it is straightforward to compute P ∗ for an EKF
statistical orbit determination filter.49 Taylor proved the following proposition:49
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Proposition: The inverse Fisher information matrix (P ∗) corresponding to a dynamic system
modeled by a nonlinear time-varying state vector differential equation with deterministic inputs
and nonlinear time-varying observations of the state variables corrupted by additive Gaussian
white noise sequences propagates according to the same equations as the filter covariance matrix
for an extended Kalman filter (EKF) linearized about the true (unknown) trajectory.

Hence, the only main differences between the EKF statistical orbit determination process summarized above
and the computation of the CRLB is that the CRLB uses the true trajectory rather than the current reference
trajectory, which is only available in simulations, and the CRLB analysis includes no process noise.

Computationally, one generates the P ∗ matrix at each instant of time by first initializing the matrix at
the reference epoch:

P ∗(t0) = P
−1

0 ,

and then one iterates the following equation at each time update:

P ∗(tk)−1 =
(
Φ(tk, tk−1)P ∗(tk−1)Φ(tk, tk−1)T

)−1
+H(tk)TW (tk)H(tk),

such that the truth trajectory is used rather than the reference trajectory.

V. Navigation Simulations

Several simulations have been performed to demonstrate that the relative satellite-to-satellite measure-
ments between a GEO satellite and a lunar libration orbiter can achieve absolute orbital navigation as well
as relative navigation of both satellites. First, a covariance study, i.e., a Cramér Rao Lower Bound analysis,
has been performed in the CRTBP to illustrate that the absolute geometry is indeed observable. Then a
navigation simulation has been conducted, implementing an extended Kalman filter for the OD estimator,
again in the simple CRTBP. The scenarios have been converted to a higher fidelity model of the solar system
and repeated to illustrate LiAISON’s results in a realistic model of the solar system. Finally, the results
have been modeled in the Jet Propulsion Laboratory’s navigation software suite MONTE (Mission-analysis,
Operations, and Navigation Toolkit Environment) to validate the developed software.

Each of the simulations uses instantaneous range and range-rate observations between the GEO satellite
and the lunar libration orbiter, once every 100 seconds. The observations have 1 meter and 1 cm/s (1-σ)
white noise applied. The state includes the 12 position and velocity components of both satellites. Unless
otherwise noted, the a priori covariance matrix has been set to be diagonal with 1-σ standard deviation
values set to 100 meters in position and 0.1 m/s in velocity.

The results of these simulations have been very promising; enough to warrant a concurrent study that
has explored the trade studies involved with high-fidelity simulations.9 The simulations include modeling
errors of every aspect of the dynamical model and a more realistic schedule of observations. Nevertheless,
the simulations conducted in this study demonstrate that LiAISON is indeed a viable method to obtain
absolute measurements of the two satellite orbits using crosslink observations.

A. Simulating in the CRTBP

This section describes the results of the simulations performed in the CRTBP. The dynamical model in-
cludes only the force of gravity of a point-mass Earth and a point-mass Moon in circular orbits about their
barycenter. The advantage of studying this model is that the navigation process cannot take advantage
of any recognizable perturbations that may exist in a real system, such as a near-constant solar radiation
pressure, or even the gravitational attraction of the Sun.

The initial conditions (x0, y0, z0, ẋ0, ẏ0, ż0) of the two satellites in the Earth-Moon barycentric rotating
frame are given as:

L1 Halo: Position: ( 3.18286 × 105 km, 0 km, 3.84410 × 104 km ),
Velocity: ( 0 km/s, 2.20731 × 10−1 km/s, 0 km/s ).

GEO: Position: ( −4.58570 × 103 km, −4.21560 × 104 km, 2.67875 × 103 km ),
Velocity: ( 2.95332 × 100 km/s, 6.03254 × 10−3 km/s, −1.94804 × 10−1 km/s ).

These conditions yield the trajectories for a satellite in a circular, equatorial geostationary orbit and a
satellite in a halo orbit about the Earth-Moon L1 point.
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B. Cramér Rao Lower Bound Analysis

A Cramér Rao Lower Bound analysis has been performed on the crosslink observations of this two-satellite
constellation in order to measure how observable the states of each satellite are in this scenario. The a priori
covariance has been set very high: to a diagonal matrix with values of 1020 on the diagonal. The weighting
matrix has been set to reflect the uncertainty in the observations, namely, 1 meter for the range observations
and 1 mm/s for the range-rate observations. Figure 9 illustrates the position and velocity components of
the resulting variance-covariance matrix as observations are processed. One can see that the position and
velocity uncertainties of both satellites falls to approximately the state of the art in satellite navigation after
about three days of tracking, i.e., to approximately 100 meters and 10 meters in position for the halo and
GEO satellites, respectively, and to approximately 1 mm/s in velocity for the two satellites. The uncertainty
continues to fall until it reaches an approximate steady-state after approximately 10 days of tracking. The
final steady-state uncertainty is below 1 meter in position for both satellites and below 0.01 mm/s and 0.1
mm/s in velocity for the halo and GEO satellites, respectively.
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Figure 9. Time evolution of the position (left) and velocity (right) components of the covariance matrix,
resulting from the Cramér Rao Lower Bound analysis in the CRTBP. The coordinates are specified in the
Earth-Moon synodic coordinate frame.

One notices that the z-axis uncertainty of the GEO satellite is greater than the in-plane components.
This may be explained because the out-of-plane geometry is less observable than the in-plane geometry. This
simulation involves about a 23◦ difference in the plane of the GEO orbiter and the Moon’s orbital plane. If
that difference were close to zero, then there would be very little information about the out-of-plane motion.
Hence, one can expect to see a relationship between the accuracy of the out-of-plane motion relative to the
accuracy of the in-plane motion to be on the order of the cosine of 23 degrees divided by the sine of 23
degrees. This results in an expected z-axis uncertainty amplitude about 2.4 times larger than the in-plane
uncertainty amplitude, which is roughly what is seen in Figure 9.

This analysis has been repeated for range-only data as well as for range and range-rate data. The results
are nearly identical, though the range-rate data improves the uncertainty early on. The steady-state values
are approximately equal.

Hill introduced a cost function known as βave to evaluate the quality of a solution.6 The parameter is
determined by computing the mean of the temporal average of the maximum 3-σ position error ellipsoid
axis for both satellites. A small βave indicates that the covariance has reduced, or, that the uncertainty in
the state parameters has fallen, and thus the observations contain information regarding each parameter
in the satellites’ state. The simulation presented here results in a βave value of approximately 0.6 meters,
meaning that the maximum 3-σ position error ellipsoid for both satellites is below 1 meter. Indeed, the state
parameters are observable.

This simulation has been repeated using different initial conditions for both the GEO orbiter and the
halo orbiter. The halo orbiter has been initialized at three different locations in its orbit, namely, at τ -values
of 0◦, 90◦, and 180◦, where τ is a parameter analogous to a conic orbit’s mean anomaly.36 The GEO orbiter
begins at many different points about its orbit. The results are extremely consistent. The βave-values for
every simulation existed in the interval 0.590221 meters ≤ βave ≤ 0.658240 meters. The 3-σ uncertainty in
the position of both satellites always falls to approximately 0.6 meters.

This analysis illustrates that the state variables are indeed observable using just crosslink data in the pres-
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ence of no asymmetric forces except what is present in the CRTBP. Presumably the addition of asymmetric
forces and ground-based tracking would help accelerate the convergence.

C. Navigation Simulation

The next step is to process simulated range measurements between the GEO satellite and the L1 halo orbiter
using a Kalman filter. The GEO and halo states given above have been used as the truth trajectories and
deviations in those states have been used as the reference trajectories. The initial state deviation is 100
meters in position and 1 cm/s in velocity for both satellites. The a priori covariance is set to correspond
with the initial state deviation: it has been set to a diagonal matrix with values of 104 m2 in position and
10−2 (m/s)2 in velocity for both satellites. State noise compensation has been implemented with a σ value
of 1 × 10−13 m/s2 for the halo orbiter and 1 × 10−14 m/s2 for the GEO satellite on the diagonal of the a
priori process noise covariance matrix. After exploring several scenarios, it has been determined that the
simulation with the best convergence properties is one that uses an extended Kalman filter starting with the
first observation. No observations are processed at all with a conventional Kalman filter.

Figure 10 illustrates the time evolution of the position and velocity accuracy of the simulation as the EKF
processes the observations, namely, the difference between the truth trajectory and the estimated trajectory
over time. Figure 11 presents the components of the covariance matrix over time on a logarithmic axis for
clarity. One can see that the uncertainty of the position of either satellite converges to about one meter
within about eight days. The coordinates are represented in the Earth-Moon rotating coordinate frame.
The increased z-axis uncertainty is again noticeable, and corresponds again to an increased uncertainty by a
factor of approximately 2.4. The largest off-diagonal element in the variance-covariance matrix after 9 days
of processing has a value of approximately 1.1 × 10−17, illustrating that there is no correlation in the state
variables. The post-fit range residuals have an RMS of approximately 0.99519 meters.
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Figure 10. Time evolution of position (left) and velocity (right) accuracy (truth − estimate) plotted with 3-σ
covariance envelopes (dotted lines). Top plot is for the L1 halo orbiter and the bottom is for the GEO satellite.
The coordinates are given in the Earth-Moon synodic reference frame in the CRTBP.

D. Full Ephemeris

In this section, the analysis is extended to a more dynamically complex and realistic scenario, where the
satellites are propagated in the presence of all of the planets and the Moon and the positions of each body
are modeled using the JPL Developmental Ephemerides DE405.37 In this model, the L1 orbiter is not in
a perfectly periodic orbit, as described above. Every filter parameter has been set to be identical to the
CRTBP scenario in order to directly compare them.

Figure 12 illustrates the time evolution of the position and velocity accuracy of the simulation as the EKF
processes the observations, namely, the difference between the truth trajectory and the estimated trajectory
over time. Figure 13 presents the components of the covariance matrix over time on a logarithmic axis
for clarity. The components in each figure are in the Geocentric Celestial Reference Frame (GCRF), the
Earth-centered version of the ICRF.50 The z-axis is approximately aligned with the Earth’s spin axis, and
the other axes are approximately aligned with the equatorial plane. One can see that the uncertainty of the
position of either satellite converges to about one meter within about seven days: somewhat faster than the
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Figure 11. Time evolution of the position and velocity variance for the two satellites in the CRTBP.

convergence in the CRTBP. The largest off-diagonal element in the variance-covariance matrix after 9 days
of processing has a value of approximately 0.0054, quite a bit larger than largest covariance in the CRTBP’s
simulation. Still, the correlation is small between all state variables.

Finally, Figure 14 illustrates the residuals after the state has been updated. One can see that the residuals
have an RMS of approximately 1 meter and 1 mm/s, again corresponding with the level of noise applied to
the observations.
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Figure 12. Time evolution of position (left) and velocity (right) accuracy (truth − estimate) plotted with 3-σ
covariance envelopes (dotted lines). Top plot is for the L1 halo orbiter and the bottom is for the GEO satellite.
The coordinates are given in GCRF.
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Figure 13. Time evolution of the position and velocity variance for the two satellites.
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Figure 14. Time evolution of the post-fit residuals. The post-fit RMS for the range is 0.98756 m and for the
range-rate is 1.0002 mm/s.

VI. Applications

The LiAISON technology has the potential of providing navigation data to any location that the com-
munication system can reach in the Earth-Moon system. Previous work has demonstrated the capability of
LiAISON between lunar assets; this study has explored the potential for LiAISON to span from the lunar
libration orbits to geostationary orbit. The lunar libration orbits, such as the LL1 halo orbit studied here,
provide locations where a single navigation satellite can support other satellites anywhere in the Earth-Moon
system.

The LiAISON concept permits autonomous navigation, but it is more likely that there will be ground
tracking support. As a supplement to ground tracking, LiAISON improves the navigation accuracy and/or
dramatically reduces the number of ground tracks required to support a mission. Multiple architectures are
viable, including a scenario where a single navigation satellite supports multiple customers by establishing
independent two-way links with each, or a scenario where a single navigation satellite supports multiple
customers by broadcasting a navigation beacon, much like GPS. Of course in that scenario each satellite
requires an accurate clock, though the Deep Space Atomic Clock (DSAC) that is currently being developed
at JPL with funding by the NASA OCT is pushing the envelop for the size, mass, and power requirements of
space-ready precision clocks. LiAISON may also be a viable technology to add to a spacecraft already aiming
for a lunar libration orbit. The relative range and range-rate information may enable low-cost rendezvous
operations in lunar libration orbits, low-cost station keeping, and precision landings on the far side of the
Moon.

VII. Conclusions

This study demonstrates the viability of obtaining both relative and absolute navigation knowledge using
just satellite-to-satellite range and range-rate measurements between a GEO satellite and a satellite in orbit
about the Earth-Moon L1 point. LiAISON has been shown to work in the past for constellations in various
orbits near the Moon. This is the first study that demonstrates LiAISON’s potential benefits at the Earth
as well as near the Moon. The navigation technology has been shown to achieve navigation accuracies
consistent with the noise in the observations. In this study, the range observations have been corrupted
by 1-meter white noise; the resulting navigation demonstrated that each satellite’s position was known to
within approximately 1 meter. The scenarios studied are representative of realistic navigation, though many
simplifications have been made in order to focus on the core hypothesis: that absolute navigation is possible
using relative radiometric tracking data between a GEO satellite and a lunar libration orbiter.
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