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SMAP Project Overview 

FOR PROJECTS IN PRIME OR 
EXTENDED MISSION, USE 

CURRENT SCIENCE IMAGE 
Primary Science Objectives :  
Global, high-resolution mapping of soil moisture and its freeze/thaw state to: 

− Link terrestrial water, energy and carbon cycle processes 
− Estimate global water and energy fluxes at the land surface 
− Quantify net carbon flux in boreal landscapes 
− Extend weather and climate forecast skill  
− Develop improved flood and drought prediction capability 

SMAP is a first-tier mission recommended by 2007 NRC Earth 
Science Decadal Survey 

Mission Implementation: 
 

http://smap.jpl.nasa.gov/ 

Partners • JPL (project & payload mgmt., science, spacecraft, 
radar, mission operations, science processing) 

• GSFC (science, radiometer, science processing) 

Risk • 7120.5D Category 2; 8705.4 Payload Risk Class C 

Launch • Oct. 2014, Delta II LV 

Orbit • Polar sun synchronous; 685 km (equatorial) altitude, 
98 minute orbit 

Duration • 3 years 

Payload • L-band (non-imaging) synthetic aperture radar (JPL) 
• L-band radiometer (GSFC) 
• Shared 6m rotating (14 rpm) antenna (JPL) 
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Mission Overview 

INSTRUMENT 

SPACECRAFT (& RADAR ELECTRONICS) 

SMAP Mission Operations & 
Data Processing 

(JPL, GSFC) 

• 685-km polar orbit (Sun-sync) 
• 8-day repeat ground track 
• Continuous instrument operation 
• 2- to 3-day global coverage 
• 3-year mission duration 

• L-band (1.3-GHz) Radar (JPL) 
• L-band (1.4-GHz) Radiometer (GSFC) 
• Shared antenna (6 m diameter) 
• Conical scan: 13–14.6 rpm; 40 incidence 
• Contiguous 1,000-km swath width 

• SMAP recently selected Delta II launch 
vehicle in July ’12 

• Planned launch date: Oct 31, 2014 

Near-Earth Network SCIENCE DATA PRODUCTS 
Soil Moisture & Freeze/Thaw State Data Products 

Alaska Satellite 
Facility 

Data Center 
(Radar 

L1 Products) 

Surface Validation 

Mission 
Design 

• JPL-developed & built 
• JPL’s MSAP/MSL avionics, power assys 

with a small number of new mission-
unique card designs 

• 1160 kg wet mass (Observatory-level) 
• 1100 W capacity (Observatory-level) 
• 80 kg propellant capacity 
• Commercial space electronics elsewhere 

SMAP 
Flight System 
(Observatory) 

National 
Snow and Ice 
Data Center 

(all other Products) 

Delta II 
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Mission/Science Driving Requirements 

 HI-RES RADAR BACKSCATTER 
PRODUCT (1-3 KM) 

RADIOMETER BRIGHTNESS 
TEMPERATURE PRODUCT 

(40KM) 

Antenna 
Beam 

Footprint 

Radiometer and Low-
Resolution Radar 

Radiometer and High-
Resolution Radar 

•  Two to three day global coverage   
• Drives requirement for conically scanning antenna 

• Spatial resolution at 10 km and 3 km for soil moisture and freeze-thaw products 
• Drives 6 meter antenna size, synthetic aperture radar design 

• Soil moisture measurement accuracy, including through moderate vegetation  
• Drives requirements for combined active and passive instrument combination 
• Drives the thermal stability requirements for both radiometer and radar 
• Drives requirement for dual polarizations 

• Dynamics and control of the scanning antenna to ensure pointing requirements are met while spinning at 14.6 rpm  
• Drives mass properties, antenna optics, spin rate stability/accuracy requirements of the spun instrument 

• Characterizing/bounding the terrestrial RFI environment early and ensuring that mitigations are adequate to prevent unacceptable 
degradation to science data 

• Drives radiometer and radar electronics designs 
• Compatibility with existing FAA Radars in shared L-band spectrum allocation 

• Drives radar duty cycle and peak power requirements 
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Observatory Configuration 

Reflector Boom 
Assembly (RBA) 

Star Tracker 

Antenna  
Feed Horn 

Deployed Solar Array 

Spun Platform 
Assembly 

Battery 
X-band LGA 

Instrument Control 
Electronics (ICE) 

Radiometer  
Front End 

S-band LGA LV Adapter 

6m 
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Fixed 
Spacecraft 



  
Spun Instrument Configuration  

Cone-Clutch 
Assembly 

RBA 
Launch Restraints 

-Boom Restraint 
 

-Upper Hoop Restraint 
 

-Cradle 
 

-Lower Hoop Restraint 

Integrated Feed Assy ICE, RDE, RBE Support Structures 

RFE & Passive RF components 
mounted to “stacked plate” 

structure 
 

Feed Assembly mounted to RFE 
Plate 

 
Assembly mounted to core 
structure using 3 bi-pods 

ICE and RDE/RBE mounted to separable structures 
with mounting surface used as radiators 
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Observatory Overview 

Stowed 
configuration 

Deployed 
configuration 
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Mission Overview 

• 2- to 3-day global coverage 

• 685-km Sun-sync orbit, 6 p.m. 

Observatory Summary 

• 3-axis-stabilized spacecraft,  
providing momentum compensation for 
spinning antenna 

• Single-string avionics and power 
control/distribution electronics 

• Limited redundancy in ACS sensors  
and actuators, and telecom radios 

• S-band telecom and 130 Mbps science 
data return via X-band link 

• Deployable, fixed solar array 

• Hydrazine blowdown propulsion system 

• Passive and heater-based thermal control 
with bus structure serving as radiators 

Propellant 

• 80.0 kg usable capacity 

• Delta-V: 112.6 m/s (includes contingency) 

• Propellant budget: 74.2 kg (includes 
contingency) 

Combined Instruments 

• L-band (1.26 GHz) Radar 

• L-band (1.41 GHz) Radiometer 

• Shared antenna (6 m diameter) rotating 
fixed rate 13 to 14.6 rpm  

Mass  

• Spacecraft: 527 kg (CBE) 

• Instrument: 312 kg (CBE) 

• JPL DP mass margin: 22% 

Power 

• 1023 W (science mode load), via 
3-panel deployable solar array 

• 59-Ah BOL battery for launch, eclipse,  and 
other off-Sun modes 

• JPL DP power margin: 22% 

• Nominal bus voltage:  29.4 – 32.8 V 

• Fault bus voltage:  24–29.4 V and 32.8–34 V 
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Spacecraft Overview 

TFAWS 2012 

 External Configuration 
 Solar arrays are ~8.0 m2 

 Single stage deployment 
 Cell type are triple junction, h = 28% 

 59 A-hr battery outside of –X panel 
 Thruster clusters at corners of –Z deck 
 Telecom antennas located on outrigger 

 
 Internal Configuration 

 Highest power instrument radar H/W mounted 
on –Y panel (anti-sun side, thermally stable) 

 Four reaction wheels on mid-deck 
 Propulsion tank protrudes into LV separation 

plane by ~4 inches 
 

Spacecraft is 3-axis stabilized 
 +X (direction SC is traveling) 
 +Y (direction of sun) 
 -Z (direction of earth, nadir) 

-Y -X 

+Z 

~1 m 

~1.4 m 

~1m 

E Configuration 
(as of 2/19/2012) -X +Y 

+Z 
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Instrument Overview 

Radiometer  
– Provided by GSFC 
– Leverages off Aquarius 

radiometer design 
– Includes RFI mitigation 

(spectral filtering) 
– 1400–1427 MHz  
– Polarizations: V, H, 

3rd & 4th stokes 
– 1.3-K accuracy 
– 40-km resolution 
– 4.3-Mbps data rate  

Common 6-m Spinning Reflector  
– Spin Assembly and Reflector/Boom 

Assembly derived from heritage designs 
– RBA provided by NGAS-Astro 
– BAPTA provided by Boeing 

– Spun structure & thermal from JPL 
– Conically scanning at 13–14.6 rpm 
– Constant incidence angle of 40-deg 

Radiometer is spun-
side-mounted to 

reduce losses 

Radar is fixed-mounted to 
reduce spun inertia 

Radar 
– Provided by JPL 
– Leverages off past JPL 

L-band science radar designs 
– 1-MHz chirps tunable over 

1217–1298 MHz  
– Polarizations: VV, HH, HV 
– 500-W SSPA (9% duty cycle) 
– 3-km spatial resolution 
– 35-Mbps data rate 
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Spacecraft Thermal Overview 

• Simple, inexpensive, low-risk thermal design 
– Mostly passive design features (MLI, radiators supply cold biasing) 
– Electronics conductively coupled to radiator panels 

• CDH / Power panel (-X) = 162 W (CBE) 
• Radar panel (-Y) = 220 W (CBE) 
• GNC / Telecom panel (+X) = 111 W (CBE) 

– MLI coverage optimized to reject electronic heat and conserve survival heater 
power 

– Some active design features (primary and redundant heater circuits) 
• Most Kapton film heaters controlled via mechanical thermostats 
• FSW controlled propellant line heaters  

– Battery temperature controlled via dedicated radiator/MLI/heaters  
• Externally mounted battery is thermally isolated from SC –X panel 

– Graphite heat spreaders on CDH (-X) panel under high powered H/W 
• K-Core (APG) thermal doubler from Thermacore 
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n • Inst. SIA is mechanically coupled to S/C deck (by design, there is a poor thermal 
path from instrument to SC) 

– Integrated model assesses SC and instrument thermal performance 

• Earth orbiter 
– 685 km altitude 
– 98°inclination (Beta angle = 58° to 89°, max eclipse = 19 min) 

MLI/Radiator coverage 
    (Green = MLI) 
    (Red = radiator) 

-Y -X 

+Z 
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– SMAP instrument thermal design is challenging and requires frequent interaction 

with the mechanical team to implement 
– Highly variable thermal environment results from fast spinning platform  
– Tight thermal stability is critical to success of radiometer  
– BAPTA bearing gradient is coupled to the SC top deck temperature 

– 4 thermal enclosures are part of the spun platform; each has a dedicated radiator 
for proper thermal management 

• RFEA (Radiometer Front End Assembly) = 11.0 W (CBE+unc) 
• RBEA (Radiometer Back End Assembly) = 62.9 W (CBE+unc) 
• ICE = 35.7 W (CBE+unc) 
• BAPTA/RJA = 8.24W (CBE+unc) 

– Silvered teflon used for radiators to meet temporal stabilities  
– RFEA and OMT enclosed within an MLI cocoon for better short term stabilities 
– Active control for RFEA to address gain glitches (control authority range of 15oC ) 
– Feedhorn closed by EPS radome to eliminate sun illumination 
– Single string survival heater architecture to minimize slip ring usage 

Spun Instrument Thermal Overview  
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Thermal Design Philosophy 

TFAWS 2012 

• Maintain a simple, reliable, inexpensive thermal design 
• Primarily passive design (use radiator/MLI as thermal control surfaces)  
• Most active heaters use mechanical thermostat control for replacement heat 
• Flight software controls external propellant line heaters and RFE heaters 

• Each electronics box conductively coupled to structural panel (doubles as a radiator) 
• Contact conductances results in 2-5°C gradients between elec boxes and panels 
• Instrument subassemblies each have their own dedicated radiators and replacement heaters 

• Must maintain components within Allowable Flight Temperatures (AFTs) per ERD 
• Initial goal was to size radiators to give ~5°C hot-case margin to AFT 
• Thermostat-controlled heaters sized to keep 2°C (redundant heaters) to 5°C (primary heater) 

margin against cold Op/Non-op AFTs during cold/safe cases 
• MLI blanketing (15 layer) used to block off panel area on outside of –X, +X, and -Y panels to 

provide required radiator area 
• MLI blanket properties: ε*hot = 0.02 and ε*cold = 0.05 

• Optical properties  
• End-of-life (EOL) for hot cases, Beginning-of-life (BOL) for cold cases  
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Power/Mass Inputs to Thermal Model 

TFAWS 2012 

• Component power dissipations 
• Hot Science:  “Science and Telecom” CBE + Contingency from PEL (10-30% 

contingency for most components) 
• Cold/Safe Mode:  90% of “Science” or “Safe” CBE  

• For Safe Mode - spacecraft is nadir pointed, similar to science orbit 
• Fixed attitude is conservative compared with safe mode rotisserie roll 

• Component Mass 
• Use CBE from MEL (less mass is conservative for any stability calculations) 
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Summary of Thermal Control Hardware  

• Kapton film heaters (Tayco) 
– SC uses primary and back-up circuits, with 2 thermostats per heater 

• Flight software controlled heaters on the external propellant line 
– Instrument uses single string survival heaters, with 4 thermostats per heater 

except RBA heaters 
• SIA operational heaters are powered by ICE 

• Thermostats (Honeywell) 
– Thermostats primary turn-on temperature is 3-5C above AFT (with 7C dead-

band) 
• Thermal sensors (Honeywell/Goodrich PRT or Boeing Thermistor) 

– Use 500, 1000, or 2000 ohm PRT or Boeing thermistor for health & status and 
active heater control 

• APG Doubler/Bracket (K-Core)  
– High conductivity APG used to transfer heat along SC panel  
– Instrument is using it as a highly conductive structural member to support RFEA 

radiator 
• Passive thermal control elements 

– Thermal paints, coating, and isolators use typical JPL parts/processes 
– MLI provides passive isolation from external environment.  Typical JPL blankets 

will be used throughout SMAP 
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• AutoCad Mechanical 2012 – Create geometry 
• Thermal Desktop 5.4 – Calculate radiation exchange 

factors, describe orbits and calculate heat rates  
• Absorbed flux vs time arrays used for transients 

(orbital average for any steady state runs) 
• Sinda Fluint 5.4 – Calculate temperatures/heat flows 

Thermal Desktop Model Description 
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• Temperature trends follow the expected environmental 
loads (solar / beta inputs and optical property degradation) 
• Low beta/long eclipse period results in largest orbital 
variation 

•Radar panel is most thermally stable (constantly 
viewing cold space) 

• Yearly variations are small compared to 10°C requirement 
• Orbital variations are small (1°C) compared to 4°C  
requirement 

Radar Seasonal Temperature Variations 
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Radiometer 3 Year Mission Life 

4oC 

RFE 
RFE 

Diplexer 

Diplexer 

0.7oC/orb 
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• Modified P control is good enough to meet all 
stability requirements 

– The design meets stability requirements with 
passive thermal design 

– ATC used solely to correct for gain glitch 
temperature set point (has been seen on 
previous radiometers) 
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• Primarily passive thermal control (MLI/thermal control surfaces) provide 

simple/robust solution 
• Some active components (FSW and mechanical thermostatically 

controlled heaters) used for survival and operational heaters 
 

• Current work demonstrates that the current thermal design is 
acceptable and will meet all thermal requirements 
 

• Thermal stability requirements for radar and radiometer are met 

Conclusions 
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