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Agenda 
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Why onboard 
hyperspectral analysis? 
 
Enabling techniques 
1. Superpixel 

segmentation  
2. Endmember 

detection 
 
EO-1 experiments 



Imaging spectrometers are 
important tools for exploration 
 

• Moon (M3) 

• Mars (OMEGA, CRISM) 
• Jupiter (Galileo NIMS) 
• Saturn (Cassini VIMS) 
• Vesta (Dawn VIR) 
• Comets (Rosetta) 
• In-situ 
• Terrestrial applications 
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Images courtesy NASA/Brown/JPL and other missions 
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Challenge: bandwidth 
constraints limit duty cycle 
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images courtesy NASA / Brown University.  Online map: http://crism-map.jhuapl.edu/ 

MRO/CRISM 
coverage by 
full-resolution 
images 



Challenge: respond to targets 
of opportunity 
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300 m 

Mt. Erebus 
thermal 
anomaly 

Hartley 2 
morphology, 
plumes 



Solution: onboard spectral 
discovery and mapping 
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flat 

shadow 

mafic? 

smectites 

sulfates 

CRISM interpretation 
[Gilmore et al., JGR 2011] 



Onboard analysis is hard 
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1. Planetary spectral 
data can be noisy 

2. Signals are subtle, 
difficult to interpret 

3. Targets are often 
unknown in 
advance 

4. Very limited 
onboard 
computation 

 

instrument 
noise 

(CRISM frt3e12) 

unanticipated 
atmospheric 
distortion 

unique & 
subtle 
mineralogy 



Superpixel representations 
exploit the spatial dimension 
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Taylor glacier 
(EO-1) 

• Spatially contiguous, 
homogeneous regions 

• Improves robustness to 
artifacts 

• Reduces noise by √n  
• Reduces data set by 

75x for later processing 

260,000 pixels 

<3500 
superpixels 
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Example Pixel Fine Superpixel Coarse Superpixel 

CRISM FRT0003e12 
 

[Thompson et al., TGARS 2010] 
 

Superpixel representations 
exploit the spatial dimension 



Mint(Sa ,Sb) Dif(Sa,Sb) 

v
j 

vi 

d(vi, vj) 

Sa 
 

• Felzenszwalb graph partitioning algorithm [2004]  
• Compute spectral distances between neighbors  
• Agglomerative clustering grows minimum spanning trees 
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Sb 
 

Superpixel representations 
exploit the spatial dimension 
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phyllosilicate 

magnesite 

olivine 

Endmember detection finds spectrally 
distinct superpixels 
Linear mixing model:  spectra 
are convex combinations of a 
small number of endmembers 
 
Endmembers often correspond 
to unique materials 



Linear mixing model:  spectra 
are convex combinations of a 
small number of endmembers 
 
Endmembers often correspond 
to unique materials 
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. measurement 
at superpixel j 

m x n matrix of 
endmembers 

n-vector of 
nonnegative 
mixing coefficients 

Gaussian 
measurement 
noise 

phyllosilicate 

magnesite 

olivine 

Endmember detection finds spectrally 
distinct superpixels 



Superpixel endmember detection 
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magnesite 

olivine 

phyllosilicate 

SMACC endmember 
detection in CRISM 3e12  
[Thompson et al., TGARS 2011] 
 

olivine 



Summary Classification 
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Spectral angle map for fast, fully automatic scene 
classification 

flat 

shadow 

mafic? 

smectites 

sulfates 

CRISM interpretation 
[Gilmore et al., JGR 2011] 



Agenda 
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Why onboard 
hyperspectral analysis? 
 
Two tricks to make it 
work 
1. Superpixel 

segmentation  
2. Endmember 

detection 
 
EO-1 experiments 



The EO-1 Spacecraft 
• Currently in an “extended 

mission” phase 
• Used in sensorweb and 

autonomous science operations 
since 2004 [Chien et al,. 2005] 

• Detects transient events such as 
floods and volcanoes 

• Mongoose-V 32-bit 
microprocessor for onboard data 
analysis 
• 12MHz clock speed 
• No hardware floating-point 

arithmetic 
• Limited memory  

(16 MB application max) 

3/25/201
3 Jet Propulsion Laboratory / California Institute of Technology / NASA AMMOS   16 

EO-1 Selective downlink of volcanic 
activity “hot spot” in thermal imagery 
[Davies et al. 2005]  



The Hyperion imaging spectrometer 
• High resolution 

hyperspectral imager  

• 220 spectral bands 
from 0.4 to 2.5 µm 

• 30 meter spatial 
resolution, provides  
7.5 x 100 km land area 
per image 

• A reflectance product  
is available for 
onboard use 
• 12 bands selected 

in advance  
(once per 
observation) 

• 256x1024 pixel 
subframe 
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Hyperion view of  
Cuprite, NV  

Gold Standard Cuprite maps  
[Kruse et al., IEEE TGARS 2003] 

AVIRIS Hyperion 

6 km 



3/25/201
3 Jet Propulsion Laboratory / California Institute of Technology / NASA AMMOS   18 

Bands, lat, 
lon Acquisition, T = 0 

3900 x 256 x 
220 image 

Uplink 

Downlink 
~5 days, 760 Mb 
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Uplink Bands, lat, 
lon Acquisition, T = 0 

1024 x 256 
image 

~3000 
superpixels 

Superpixel Segmentation 

Endmember (EM) 
detection 

SAM Match to 
endmembers 

30 EM 
spectra 

1024x256 EM 
map 

3900 x 256 x 
220 image 

Telemetry  
~6 hours, 160 Kb 

Reflectance conversion,  
band selection 

Downlink 
~5 days, 760 Mb 

EM locations 
and spectra 



Cuprite NV, USA – Sept. 2011 

Credit: nvghosttowns.com 
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Cuprite NV, USA – Sept. 2011 

Sept. 19, 2011 
Overflight  

Sept. 27, 2011 
Overflight  

E A 

B 

C 

D 

G 

F 

H 

Gold Standard Cuprite maps  
[Kruse et al., IEEE TGARS 2003] 
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Kruse et al. manual 
analysis (Hyperion) 

Calcite 

Muscovite 

Muscovite / 
Kaolinite 

Alunite / 
Kaolinite 

Alunite / 
Kaolinit
e 

D’ 

E’ 

F’ 

G’ 

H’ 

Full spectrum Endmember spectra 

Cuprite NV, USA – Sept. 2011 



Steamboat Springs, USA – 3 Oct 2012 
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Credit: NREL 
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Compositional map 
generated onboard 

Authoritative version of [Kruse 
et al., 2003] 

Steamboat Springs, USA – 3 Oct 2011 

Endmember spectra 

3/25/201
3 Jet Propulsion Laboratory / California Institute of Technology / NASA AMMOS   



25 

Credit: USAP 

Blood Falls, Taylor Glacier – 7 Feb 2012 
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Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 

Hyperspectral 
image 

Spectral 
endmember 

Blood Falls, Taylor Glacier – 7 Feb 2012 
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Mammoth Springs, MT - 20 Oct 2011   
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Hyperspectral image 

Mammoth 
springs 

Mammoth Springs, MT - 20 Oct 2011   
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Parking lot 
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Rio Tinto, Spain- 25 May 2012 
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Credit: Carol Stoker (AMES) / Wikicommons 
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Rio Tinto, Spain- 25 May 2012 
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Credit: Carol Stoker (AMES) / Wikicommons 

Clouded over? 
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Rio Tinto, Spain- 25 May 2012 
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Credit: Jesús Municio 

Mine tailings 



• Automatic onboard mapping summarizes a 1024 x 256 
x 220 scene using 20kB 

• Runs onboard, using a fraction of a 12MHz processor 

• Requires <16MB of volatile memory 

• Identifies pure features and returns exemplar spectra  

• Operating regularly on EO-1 

 

Summary 
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Autonomy can be enabling for hyperspectral imagers 

More sophisticated detection algorithms are possible 

• Follow up on signatures in a library 

• Follow up on signatures not in a library 

• Linear unmixing 

Multi-core architectures and FPGAs can provide faster, 
full-spectrum analyses 

 

 

Future directions 
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Extra slides 
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    Automatic 
    onboard  
    analysis 

Uplink Bands, lat, 
lon Acquisition, T = 0 

1024 x 256 
image 

~3000 
superpixels 

Superpixel Segmentation 

Endmember (EM) 
detection 

SAM Match to 
endmembers 

30 EM 
spectra 

1024x256 EM 
map 

3900 x 256 x 
220 image 

Telemetry  
(T = ~6h) 

Reflectance conversion,  
band selection 

Downlink 
(T = ~5d) 

EM locations 
and spectra 



300 m 

EO-1 Thermal signature detection 
 
Black Body model used to trigger a second observation [Chien et al. 2005] 

 

Jet Propulsion Laboratory / California Institute of Technology / NASA AMMOS   38 

ASE images Erebus Night 

ASE initiates band extraction 

ASE runs thermal classifier 

THERMAL TRIGGERED 

Planner selects reaction 
observation 

(Stromboli observation replaced) 

Thumbnail downlinked (S-band)  

ASE images Erebus again 

ASE Onboard 
Thermal Classifier 

Thumbnail 

ASE Onboard 
Thermal Classifier 

13:40 GMT 

15:58 GMT 

} +28 min 

} +10 min 

} +29 min 

20:10 GMT 
+ 06:30 

} +20 min 
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Kruse et al. 
(AVIRIS) 

Kruse et al. (Hyperion) 

Cuprite NV 
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EO-1 
endmember 

 
 

 

#2 

#15 

#27 

#3 

EO-1 Onboard 



• Posit spectral distances d(vi, vj) between neighbors 

• Agglomerate  minimum spanning trees [Felzenswalb 2004] 

• Merge based on largest internal distance 

Superpixels via graph partitioning 
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Mint(Sa ,Sb) Dif(Sa,Sb) 

v
j 

vi 

d(vi, vj) 
Sa 
 

Sb 
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Kruse et al. 

EO-1 Onboard 
Sept. 21, 2011 

Kruse et al. manual 
analysis (Hyperion) 

endmember 2 
Alunite 

15 (spurious) 

3 Muscovite 

27 Calcite 

2 Alunite 

7 Calcite 

16 Muscovite 

21 Muscovite 

29 Kaolinite/Alunite? 

28 Kaolinite/Mscovite 

EO-1 Onboard 
Sept. 27, 2011 
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