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Introduction

I Climate models are deterministic, mathematical descriptions of the physics
of climate.

I They provide a laboratory for experiments that we can’t carry out in the real
world. Also used to make predictions about future climate.

I Should we believe them? Can we quantify how uncertain their predictions
are?

I SAMSI program: UQ as a discipline and UQ as practiced re: climate
models.

I How can modern observational data sources be brought to bear?
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UQ as a Discipline

I NRC study on verification, validation,
and uncertainty quantification (2012).

I Verification = How well does computer
code solve equations of the
mathematical model?

I Validation = How well does the
mathematical model represent the true
physical system?

I UQ = “The process of quantifying
uncertainties associated with model
calculations of true, physical quantities
of interest with the goals of accounting
for all sources... and quantifying the
contributions of specific sources."

I Climate modeling case study.
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UQ as a Discipline

I Verification: two broad classes: code verification and solution verification.

I Validation:
I How good is the underlying mathematical model? Leads to

“structural" uncertainty.
I Model calibration: ancillary unknowns must be estimated from data.

Leads “parametric" uncertainty.
I Interpolative predictions of primary unknowns ↔ simulations of past

and present (we have data).
I Extrapolative predictions of primary unknowns ↔ predictions of the

future (we have no data).
I UQ:

I Quantify uncertainties in model inputs.
I Propagate these uncertainties through calculation.
I Quantify variability of the true quantities of interest.
I Aggregate uncertainties from different sources.
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Simple Example

� Quantity of interest: time for a bowling ball
to fall from 100m tower.

� Mathematical model: a function of g
(gravitational constant). Assume it is
imperfectly known and must be estimated.

� Data: experimental drop times from 10,
20, 30, 40, 50m.

� Validation experiment: drop time from
60m.

� Sources of uncertainty: mathematical
model, true value of g, data on drop times
used to estimate g, form of the estimate of
g, extrapolation to 100m.

From the 2012 NRC report, Assessing the 
Reliability of Complex Models, page 15.
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Climate Model Example

I Quantity of interest: (say) annual precipitation in the western US in 30
years.

I Mathematical model: equations reflecting best physics understanding
instantiated on a coarse grid in space and time. Many poorly understood
feedbacks. Exchangeability of present and future; effects of different
forcings/scenarios.

I Data: many heterogeneous sources (e.g., remote sensing, surface
stations, radiosondes, aircraft) but massive yet incomplete, and themselves
uncertain; often the result of inference.

I Validation experiment: CMIP5 decadal “experiments" and observations?

I Sources of uncertainty: process understanding over different spatial and
temporal scales, model resolution, initial conditions, unknown parameters,
inherent variability of (true) precipitation, and so on.

6



The SAMSI Program
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The SAMSI Program

I Opening Workshop: review current landscape and state-of-the-art
approaches.

I Working Groups: conduct research on specific topics of interest to
participants.

I Observations Workshop: focus specifically on the role of observational
data in UQ for climate models.

What’s new about this: data (observations) are becoming more important!
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Observations

I Two major roles:
I Estimate pdf’s (or parameters of those pdf’s) of processes that are not

well enough understood to model directly. (Model “calibration" in
UQ-speak, “parameterizations" in climate-model-speak.)

I Compare against climate model simulations to characterize
uncertainties in model output. (Model “validation" in UQ-speak.)

I Issues:
I Uncertainty in the observations needs to be quantified and accounted

for in any analysis that uses them. How best to capture/communicate
this? (Asheville: provide an ensemble of observations from which to
sample?)

I Observational data sets are massive and heterogeneous (e.g.,
different support, measurement error, sampling).
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Observations

Inferred (e.g., remote sensing)
I radiance measurement error
I underlying forward model
I method of inference (“retrieval")
I spatial and temporal aggregation

(satellites)
I massive size

I distributed storage
I sampling relative to “true" field
I spatially coarse, but often dense
I often temporally sparse
I relatively short record

Directly measured (e.g., surface stations, aircraft)

I measurement error
I “point-level" spatial support
I spatially dense in places

I temporally dense in places
I records as long as hundreds of

years
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Observations

UQ for climate observations (remote sensing):

Footprint 
radiance 

vector
"Retrieval"

Atmospheric 
state estimate

Y X̂

Y = F (X) + ε

X̂ = E (X|Y)
measurement 
error

forward model: nonlinear, many 
approximations, imperfect 
knowledge, nuisance parameters

high-dimensional, 
coarse spatial scale, 
instrument artifacts 
and sensitivities

How to “validate” X̂? How to quantify its uncertainty?

Bottom-up: propagate input uncertainties through retrieval.

Top-down: compare X̂ to “truth”. (“Truth”? Really?)

vertical and horizontal support, 
which quantities included?

prior
knowledge?
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Observations

Data “fusion" and “homogenization":

I Fusion: combine multiple heterogeneous
observational data sets, in a way that
exploits their complementary strengths, to
estimate true geophysical fields with
minimum uncertainty.

I Homogenization: remove biases (or other
artifacts) due to non-climate sources, from
climate data.

I These are related- they are both about
inferring the true field (or getting closer to it).

t = 1

t = 2

t = 3

t = 4

True field 1 True field 2Instrument 1 Instrument 2

Image credit: Project SCREEN, Center for Climate Change, 
Universitat Rovira i Virgili, Spain.
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Closing thoughts

UQ for Climate Science

UQ for Climate Models

UQ for Climate 
Observations

UQ for Climate 
Observations

� Uncertainty quantification for climate
observations is important in both model
“calibration"/parameterization and model
“validation".

� Uncertainty quantification for climate
observations is important upstream:
observations used to formulate hypotheses
ultimately instantiated in climate models.

� Is UQ the same for all these purposes?

� UQ for simulations of past/present vs. UQ for
predictions of the future?
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Comments?

Contact Amy.Braverman@jpl.nasa.gov.

Support for this work is provided by NASA’s Earth Science Data
Records Uncertainty Analysis Program.

This work was performed at the Jet Propulsion Laboratory under contract with
the National Aeronautics and Space Administration. Government sponsorship
acknowledged. Copyright 2012, California Institute of Technology. All rights
reserved.
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