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Introduction

I Climate models are deterministic, mathematical descriptions of the physics
of climate.

I Confidence in predictions of future climate is increased if the physics are
verifiably correct.

I A necessary (but not sufficient) condition is that past and present climate
be simulated well.

I Quantify the likelihood that a (summary statistic computed from a) set of
observations arises from a physical system with the characteristics
captured by a model-generated time series.

I Given a prior on models, we can go further: posterior distribution of model
given observations.
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Approach

If the atmosphere behaves as the model specifies, then we would expect the
observations to look like the model output to within the inherent variability of the
model output.

Observations: Y0 =
(
Y01, . . . ,Y0N0

)′.
Output of model j : Yj =

(
Yj1, . . . ,YjNj

)′.
Statistic: g(·): g(Y0) = g0, g(Yj ) = gj .

Estimate the sampling distribution of gj by
resampling.

Sampling distribution of the 
median, location [35N,235E]

Likelihood of observing g0 given model j sampling distribution is a figure of
merit.
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Approach

I Let A = j be the event that model j best represents the physical system.

I Let g0 = g(Y0) be a statistic computed from the time series of
observations.

I Let f (x |A = j) be the sampling distribution (density) of that statistic given
A = j .

I f (g0|A = j) is the likelihood of g0 given A = j .

I P(g0|A = j) =
∫ g0+ε/2

g0−ε/2 f (x |A = j)dx , ε small.

I P(A = j|g0) ∝ P(g0|A = j)P(A = j).
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Approach

...
...

...

Compute        

Compute        

Compute        

Model j output

Compute        Create B bootstrap resamples  
of size       (with replacement) 

from model-j output,       .

Observations
 

N0

Moving-block bootstrap: 
what blocklength?

Empirical likelihood

g0
g0 = g(Y0)

g∗j1

g∗j2

g∗jB

Fit density to {g∗j }

g0

f ∗j (g0)

f ∗j

f̂ (g(Y0)|A = j) = f ∗(g0)

Y∗j1 =
(
Y ∗j11, . . . , Y

∗
j1N0

)′

Y∗j2 =
(
Y ∗j21, . . . , Y

∗
j2N0

)′

Y∗jB =
(
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A motivating application: GPCI

I “Water vapor changes represent the largest feedback affecting climate
sensitivity... Cloud feedbacks remain the largest source of uncertainty..."
(IPCC 2007).

I GCSS Pacific Cross-section Intercomparison Project (GPCI):
I Study important physical regimes and transitions.
I Evaluate models and observations in the tropics and sub-tropics in

terms of hydrological cycle.
I Utilize a new generation of satellite data sets.
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A motivating application: GPCI

Model time series:

I Coupled Model Intercomparison Project (CMIP3)
“AMIP" runs forced with observed sea-surface
temperatures.

I Monthly time series of specific humidity from late
1970’s through early 2000’s at varying spatial
resolutions.

I Time series range from 228 to 300 months.
I Multiple atmospheric levels- we concentrate on

850 hPa.
I For each model, data for model grid cells entirely

contained within GCSS grid cells are averaged to
form time series.

CMIP3 models:

I CMRM CM3
I GFDL CM2 1
I GISS MODEL E R
I IAP FGOALS1 0 G
I INMCM3 0
I IPSL CM4
I MIROC3 2 HIRES
I MIROC3 2 MEDRES
I MPI ECHAM5
I MRI CGCM2 3 2A
I NCAR CCSM3 0
I NCAR PCM1
I UKMO HADGEM1
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A motivating application: GPCI

Observational time series:

I Specific humidity from NASA’s Atmospheric Infrared Sounder (AIRS)
instrument, using the AIRS “IPCC" data set.

I Monthly time series from September 2002 through June 2010 (94 months)
at 1◦ × 1◦ spatial resolution.

I Multiple atmospheric levels interpolated to match model levels. We use
850 hPa.

I Data for AIRS grid cells entirely contained within GCSS grid cells are
averaged to form observational time series.
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A motivating application: GPCI

I Working with
anomalies
(annual cycle
removed).

I No one-to-one
match-up of time
points.

I Here, model runs
and observations
barely overlap.

I Which statistics
are important?
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Other approaches

I Model “metrics"
based on simple
descriptive statistics
of discrepancies
between model
output and
observations.

I Heritage from
weather forecast
verification.
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Other approaches

Two specific examples:

I Mean squared error:

d1(Yj ,Yj′) =
1
M
‖Yj − Yj′‖2,

where Yj and Yj′ are two time series of length M. (Pierce et al., 2009).

I Scaled difference of means:

d2(Yj ,Yj′) =
|Ȳj − Ȳj′ |

3sj
,

where sj is the standard deviation of the elements of Yj . (Waugh and
Eyring, 2008).
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A simulation study

How will we know how well this works? How do we judge?

A simulation study:

Consider six moving-average models with orders of dependence
ω = 0, 2, 4, 6, 8, and 10, respectively. Index the models by j = 1, 2, 3, 4, 5, 6 so
that ω(j) = 2(j − 1).

A generic realization from model j is Yj = {Yjn : n = 1, . . . , 1000− ω(j)},

Yjn ≡
1√

ω(j) + 1

n+ω(j)∑
i=n

ei , ei ∼ χ2(1)− 1, iid .

Our experiment: let each model j = 1, . . . , 6 successively represent the “true"
model, and evaluate all six models j ′ = 1, . . . , 6 against it.

For each (j, j ′) combination, base the evaluation on K = 500 realizations from
Yj and K = 500 independent realizations form Yj′ .
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A simulation study
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A simulation study
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Evaluate:
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j = 1, . . . , 6.
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A simulation study
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A simulation study
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A simulation study
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Ĥj(j
�)

Ĥj (j ′) = median{v}{Ĝv
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A simulation study
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A simulation study
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A simulation study
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j (j ′)}.

21



A simulation study
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A simulation study

Are these results significant?

A perfect result has high values on the diagonal, and zeros elsewhere.

Measure departure from the perfect result by
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wj j ′ rj ′|j

j ′j ′

j j

rj′|j is within-row rank.

wjj ′ is index-difference from the
diagonal.

Null distribution of D obtained by
permuting rj′|j 20,000 times.
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A simulation study
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Blocklength selection

I Many approaches to blocklength selection for the MBB in the literature,
e.g., Hall, Horowitz, and Jing (1995), Buhlmann and Kunsch (1999), Politis
and White (2004), Bickel and Sakov (2008).

I Rely heavily on asymptotics and did not work well in our simple simulation
experiments.

I Heuristic: for time series with temporal dependence, choosing blocklength
too large is less problematic than choosing it too small.
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Blocklength selection

I Sampling distribution of g as a
function of blocklength, l ,
converges.

I Not to the true sampling
distribution, but to something.

I Since “too long" is less
problematic than “too short",
we seek the smallest value of l
beyond which the sampling
distribution doesn’t change
significantly.

I Call this “acceptable"
blocklength.

D
en
si
ty

Q50

Kernel density fit to y13MA(4), f ∗3 (g, l), g = Q50
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Blocklength selection

I For the simulation study we tested blocklengths 1, 2, . . . , 15.

Acceptable Blocklength
MA Order (ω)

g 0 2 4 6 8 10
q.25 2 6 6 8 9 9
q.50 2 5 7 8 9 10
q.75 2 5 7 8 7 8
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AIRS and CMIP3 models

Statistics:

I g = q.05

I g = q.25

I g = q.50

I g = q.75

I g = q.95

Blocklengths tested:

1, . . . , 24 (two year lag).

GPCI locations:

I [35,235]
I [32,231]
I [29,227]
I [26,223]
I [23,219]
I [20,215]
I [17,211]
I [14,207]
I [11,203]
I [8,199]
I [5,195]
I [2,191]
I [-1,187]

CMIP3 models:

I CMRM CM3
I GFDL CM2 1
I GISS MODEL E R
I IAP FGOALS1 0 G
I INMCM3 0
I IPSL CM4
I MIROC3 2 HIRES
I MIROC3 2 MEDRES
I MPI ECHAM5
I MRI CGCM2 3 2A
I NCAR CCSM3 0
I NCAR PCM1
I UKMO HADGEM1
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AIRS and CMIP3 models

Relative figures of merit, Q50

Posterior probabilities, Q50
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AIRS and CMIP3 models

Other views:

Location-centric view

Model-centric view

(Relative figures of merit)
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AIRS and CMIP3 models

XCMRM CM3

I Xm, m = 1, . . . , 13 is the location-by-statisic matrix for model m.
I Compute D, the 13× 13 distance matrix between Xmi and Xmj for all i, j ,

using the Froebenius norm.
I Perform multidimensional scaling on D. (Eigenvalues: 9.87, 8.87, 6.56,

6.05, 5.25, 4.51, 4.34, 2.99, 2.41, 2.10, 1.93, 1.48, 0.)
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Conclusions (1)

I Statistical:

I Method evaluates models according to how likely a statistic computed
from observations is, given that models represent the system.

I No Gaussian assumptions, but blocklength selection is crucial.
Subject of ongoing work.

I Express results as relative likelihoods or posterior probabilities.
Likelihoods make comparisons easier, but probabilities are more
interpretable.

I Computation is not a problem as long as each grid box treated
separately.

I Next: evaluate models’ ability to capture spatio-temporal statistics.
Computational issues?
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Conclusions (2)

I Scientific:

I Which statistics are important?

I Are the observational and the model variables really comparable?

I What about uncertainty in the observations?

I What is the overall objective?

I Improve process representation?

I Weights for multimodel ensembles? (“The end of model democracy?",
Knutti (2010).)
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The end

Questions, comments?

Contact Amy.Braverman@jpl.nasa.gov.

Support for this research is provided by NASA’s Earth Science Data
Records Uncertainty Analysis Program.

This work was performed partially at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics and Space
Administration. Government sponsorship acknowledged. Copyright 2012, all
rights reserved.
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MBB

The moving-block bootstrap:

Original series: y1
j =

(
y1

j1, . . . , y
1
jN
)′

.

Create an MBB series:

1. Let l = blocklength, Q = bN/lc, and S = N − l + 1.
2. Sample integers from the set {1, . . . ,S} Q times with replacement to

obtain {t∗1 , . . . , t∗Q}.
3. y1∗

jt (l) =
(
y1

jt , y
1
j(t+1), . . . , y

1
j(t+l−1)

)
.

4. y1∗
j (l) =

(
y1

jt∗1
(l), . . . , y1

jt∗Q
(l)
)′

.

Estimate sampling distribution of g:

1. Create B MBB series, y1∗
j (l, b), b = 1, . . . ,B.

2. Fit kernel density estimate to {g(y1∗
j (l, 1)), . . . , g(y1∗

j (l,B))} to produce
f ∗j (g, l).

39



MBB

Moving-block bootstrap example

1 2 3 4 5 6 7 8 9 10

84 105 12 67 89117 23824 55

1 2 3 4 5 6 7 8 9

5 2 31
24 117 2 84 105

9
55 105 12 12 67

8 6 2

89 2 117 38 105 12

6

117 38 67 24

4

mean = 58.3

mean = 60.9

2 55
9

8938
7

89 2 84 105
18

105 12
2

mean = 58.1

data indices
data values

block indices

block indices in resample 1

block indices in resample 2

block indices in resample B

data values in resample 1

data values in resample 2

data values in resample B

Estimated sampling distribution of the mean
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Blocklength selection
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Blocklength selection

Acceptable blocklengths for Q05
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Blocklength selection

Acceptable blocklengths for Q25
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Blocklength selection

Acceptable blocklengths for Q50
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Blocklength selection

Acceptable blocklengths for Q75
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Blocklength selection
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AIRS and CMIP3 models

Relative figures of merit, Q05

Posterior probabilities, Q05
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AIRS and CMIP3 models

Relative figures of merit, Q25

Posterior probabilities, Q25
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AIRS and CMIP3 models

Relative figures of merit, Q75

Posterior probabilities, Q75
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AIRS and CMIP3 models

Relative figures of merit, Q95

Posterior probabilities, Q95
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