Likelihood-based Climate Model Evaluation

Amy Braverman1 Noel Cressie2 Joao Teixeira1

1Jet Propulsion Laboratory,
California Institute of Technology

2Department of Statistics,
The Ohio State University

September 7, 2012
Introduction and problem statement

Our approach

A motivating example: CMIP3 models and AIRS observations

Some traditional approaches, for comparison

How do we judge the merits of these approaches? A simulation study

Results for CMIP3 and AIRS

Blocklength selection

Conclusions
Climate models are deterministic, mathematical descriptions of the physics of climate.

Confidence in predictions of future climate is increased if the physics are verifiably correct.

A necessary (but not sufficient) condition is that past and present climate be simulated well.

Quantify the likelihood that a (summary statistic computed from a) set of observations arises from a physical system with the characteristics captured by a model-generated time series.

Given a prior on models, we can go further: posterior distribution of model given observations.
If the atmosphere behaves as the model specifies, then we would expect the observations to look like the model output to within the inherent variability of the model output.

Observations: $Y_0 = (Y_{01}, \ldots, Y_{0N_0})'$.

Output of model j: $Y_j = (Y_{j1}, \ldots, Y_{jN_j})'$.

Statistic: $g(\cdot): g(Y_0) = g_0$, $g(Y_j) = g_j$.

Estimate the sampling distribution of g_j by resampling.

Likelihood of observing g_0 given model j sampling distribution is a figure of merit.
Let $A = j$ be the event that model j best represents the physical system.

Let $g_0 = g(Y_0)$ be a statistic computed from the time series of observations.

Let $f(x|A = j)$ be the sampling distribution (density) of that statistic given $A = j$.

$f(g_0|A = j)$ is the likelihood of g_0 given $A = j$.

$P(g_0|A = j) = \int_{g_0-\epsilon/2}^{g_0+\epsilon/2} f(x|A = j) dx, \quad \epsilon \text{ small.}$

$P(A = j|g_0) \propto P(g_0|A = j)P(A = j).$
Approach

Observations
\[Y_0 = (Y_{01}, \ldots, Y_{0N_0})' \]

Model j output
\[Y_j = (Y_{j1}, \ldots, Y_{jN_j})' \]

Moving-block bootstrap: what blocklength?

Create B bootstrap resamples of size \(N_0 \) (with replacement) from model-j output, \(Y_j \).

Compute \(g_0 = g(Y_0) \)

Fit density to \(\{g_j^*\} \)

Compute \(f_j^* \)

Compute \(g_j^* \)

Compute \(Y_j^* \)

\[Y_{j1}^* = (Y_{j11}^*, \ldots, Y_{j1N_0}^*)' \]

\[Y_{j2}^* = (Y_{j21}^*, \ldots, Y_{j2N_0}^*)' \]

\[\vdots \]

\[Y_{jB}^* = (Y_{jB1}^*, \ldots, Y_{jBN_0}^*)' \]

\[\hat{f}(g(Y_0)|A = j) = f^*(g_0) \] — Empirical likelihood
A motivating application: GPCI

- “Water vapor changes represent the largest feedback affecting climate sensitivity...Cloud feedbacks remain the largest source of uncertainty...” (IPCC 2007).

- GCSS Pacific Cross-section Intercomparison Project (GPCI):
 - Study important physical regimes and transitions.
 - Evaluate models and observations in the tropics and sub-tropics in terms of hydrological cycle.
 - Utilize a new generation of satellite data sets.
A motivating application: GPCI

Model time series:

- Coupled Model Intercomparison Project (CMIP3) "AMIP" runs forced with observed sea-surface temperatures.
- Monthly time series of specific humidity from late 1970’s through early 2000’s at varying spatial resolutions.
- Time series range from 228 to 300 months.
- Multiple atmospheric levels- we concentrate on 850 hPa.
- For each model, data for model grid cells entirely contained within GCSS grid cells are averaged to form time series.

CMIP3 models:

- CMRM_CM3
- GFDL_CM2_1
- GISS_MODEL_E_R
- IAP_FGOALS1_0_G
- INMCM3_0
- IPSL_CM4
- MIROC3_2_HIRES
- MIROC3_2_MEDRES
- MPI_ECHAM5
- MRI_CGCM2_3_2A
- NCAR_CCSM3_0
- NCAR_PCM1
- UKMO_HADGEM1
A motivating application: GPCI

Observational time series:

- Specific humidity from NASA’s Atmospheric Infrared Sounder (AIRS) instrument, using the AIRS “IPCC" data set.

- Monthly time series from September 2002 through June 2010 (94 months) at $1^\circ \times 1^\circ$ spatial resolution.

- Multiple atmospheric levels interpolated to match model levels. We use 850 hPa.

- Data for AIRS grid cells entirely contained within GCSS grid cells are averaged to form observational time series.
A motivating application: GPCI

- Working with anomalies (annual cycle removed).
- No one-to-one match-up of time points.
- Here, model runs and observations barely overlap.
- Which statistics are important?
Other approaches

Model “metrics” based on simple descriptive statistics of discrepancies between model output and observations.

Heritage from weather forecast verification.

Annual cycle of global fields: Assessment of the relative skill (S) of individual CMIP3 models.

\[E_{vm} = \text{RMS error in simulating the spatial pattern of the climatological annual cycle of variable } v \text{ by model } m \]

\[S_{vm} = \frac{E_{vm} - \hat{E}_v}{\hat{E}_v} \]

where \(\hat{E}_v \) is the median of the individual error measures, \(E_{vm} \)

Other approaches

Two specific examples:

▶ Mean squared error:

\[d_1(Y_j, Y_j') = \frac{1}{M} \| Y_j - Y_j' \|^2, \]

where \(Y_j \) and \(Y_j' \) are two time series of length \(M \). (Pierce et al., 2009).

▶ Scaled difference of means:

\[d_2(Y_j, Y_j') = \frac{\overline{Y}_j - \overline{Y}_j'}{3s_j}, \]

where \(s_j \) is the standard deviation of the elements of \(Y_j \). (Waugh and Eyring, 2008).
How will we know how well this works? How do we judge?

A simulation study:

Consider six moving-average models with orders of dependence $\omega = 0, 2, 4, 6, 8,$ and 10, respectively. Index the models by $j = 1, 2, 3, 4, 5, 6$ so that $\omega(j) = 2(j - 1)$.

A generic realization from model j is $Y_j = \{ Y_{jn} : n = 1, \ldots, 1000 - \omega(j) \}$,

$$Y_{jn} \equiv \frac{1}{\sqrt{\omega(j)} + 1} \sum_{i=n}^{n+\omega(j)} e_i, \quad e_i \sim \chi^2(1) - 1, \quad iid.$$

Our experiment: let each model $j = 1, \ldots, 6$ successively represent the “true" model, and evaluate all six models $j' = 1, \ldots, 6$ against it.

For each (j, j') combination, base the evaluation on $K = 500$ realizations from Y_j and $K = 500$ independent realizations form $Y_{j'}$.
A simulation study

\[
y_j^v \text{ is the } v\text{th time series generated by model } j.
\]
A simulation study

Evaluate:

\[\hat{S}^{\nu}(j, j') \equiv \hat{f}_{j'}^{\nu}(g(y_j^{\nu})), \]
\[\nu = 1, \ldots, 500, \]
\[j = 1, \ldots, 6. \]
A simulation study

<table>
<thead>
<tr>
<th>True model</th>
<th>MA(0)</th>
<th>MA(2)</th>
<th>MA(4)</th>
<th>MA(6)</th>
<th>MA(8)</th>
<th>MA(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Candidate model

$$S_1(j, j') \equiv \hat{i}_j^V(g(y_j^v)), \quad v = 1, \ldots, 500, \quad j = 1, \ldots, 6.$$
A simulation study

Candidate model

<table>
<thead>
<tr>
<th>j' = 1</th>
<th>j' = 2</th>
<th>j' = 3</th>
<th>j' = 4</th>
<th>j' = 5</th>
<th>j' = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA(0)</td>
<td>MA(2)</td>
<td>MA(4)</td>
<td>MA(6)</td>
<td>MA(8)</td>
<td>MA(10)</td>
</tr>
</tbody>
</table>

\[j = 1 \]

\[y_1, y_1^{501}, \ldots, y_1, y_2 \]

\[y_1^{500}, y_1^{1000}, \ldots, y_1, y_2^{500} \]

\[y_1^{500}, y_1^{1000}, \ldots, y_1, y_2^{500} \]

\[\cdots \ldots \cdots \]

\[j = 2 \]

\[y_2, y_1 \]

\[y_2^{500}, y_1^{500}, \ldots, y_2, y_2^{501} \]

\[y_2^{500}, y_1^{500}, \ldots, y_2, y_2^{1000} \]

\[\cdots \ldots \cdots \]

\[j = 3 \]

\[y_3, y_2 \]

\[y_3^{500}, y_1^{500}, \ldots, y_3, y_2^{501} \]

\[y_3^{500}, y_1^{500}, \ldots, y_3, y_2^{1000} \]

\[\cdots \ldots \cdots \]

\[j = 4 \]

\[y_4, y_3 \]

\[y_4^{500}, y_1^{500}, \ldots, y_4, y_2^{501} \]

\[y_4^{500}, y_1^{500}, \ldots, y_4, y_2^{1000} \]

\[\cdots \ldots \cdots \]

\[j = 5 \]

\[y_5, y_4 \]

\[y_5^{500}, y_1^{500}, \ldots, y_5, y_2^{501} \]

\[y_5^{500}, y_1^{500}, \ldots, y_5, y_2^{1000} \]

\[\cdots \ldots \cdots \]

\[j = 6 \]

\[y_6, y_5 \]

\[y_6^{500}, y_1^{500}, \ldots, y_6, y_2^{501} \]

\[y_6^{500}, y_1^{500}, \ldots, y_6, y_2^{1000} \]

\[\cdots \ldots \cdots \]

\[\hat{G}_j^{500}(j') \]

\[\hat{G}_j^{1}(j') \]

\[\hat{G}_j^{\nu}(j') = \frac{\hat{S}_\nu(j, j')}{\max_{\{m\}}\{\hat{S}_\nu(j, m)\}}, \]

\[m = 1, 2, 3, 4, 5, 6. \]
A simulation study

Candidate model

\[
\hat{H}_j(j') = \text{median}_{\{v\}} \{ \hat{G}_j^v(j') \}.
\]
A simulation study

<table>
<thead>
<tr>
<th>True model</th>
<th>$j' = 1$</th>
<th>$j' = 2$</th>
<th>$j' = 3$</th>
<th>$j' = 4$</th>
<th>$j' = 5$</th>
<th>$j' = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j = 1$</td>
<td>MA(0)</td>
<td></td>
<td>$\hat{H}_1(1)$</td>
<td>$\hat{H}_1(2)$</td>
<td>$\hat{H}_1(6)$</td>
<td></td>
</tr>
<tr>
<td>$j = 2$</td>
<td></td>
<td>MA(2)</td>
<td>$\hat{H}_2(1)$</td>
<td>$\hat{H}_2(2)$</td>
<td>$\hat{H}_2(6)$</td>
<td></td>
</tr>
<tr>
<td>$j = 3$</td>
<td></td>
<td></td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td></td>
</tr>
<tr>
<td>$j = 4$</td>
<td></td>
<td></td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td></td>
</tr>
<tr>
<td>$j = 5$</td>
<td></td>
<td></td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
<td></td>
</tr>
<tr>
<td>$j = 6$</td>
<td></td>
<td>MA(10)</td>
<td>$\hat{H}_6(1)$</td>
<td>$\hat{H}_6(2)$</td>
<td>$\hat{H}_6(6)$</td>
<td></td>
</tr>
</tbody>
</table>

$\hat{H}_j(j') = \text{median}_{\{v\}} \{\hat{G}^v_j(j')\}$.

Repeat for three summary statistics:

\[g = q_{.25}, \]
\[g = q_{.50}, \]
\[g = q_{.75}. \]
A simulation study

Candidate model

<table>
<thead>
<tr>
<th>True model</th>
<th>$j' = 1$</th>
<th>$j' = 2$</th>
<th>$j' = 3$</th>
<th>$j' = 4$</th>
<th>$j' = 5$</th>
<th>$j' = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MA(0)</td>
<td>MA(2)</td>
<td>MA(4)</td>
<td>MA(6)</td>
<td>MA(8)</td>
<td>MA(10)</td>
</tr>
<tr>
<td>$j = 1$</td>
<td></td>
<td>y_1^1</td>
<td>y_1^{501}</td>
<td>y_1^2</td>
<td>y_1^{500}</td>
<td>y_1^{1000}</td>
</tr>
<tr>
<td>$j = 2$</td>
<td>MA(2)</td>
<td>y_2^1</td>
<td>y_2^{500}</td>
<td>y_2^2</td>
<td>y_2^{501}</td>
<td>y_2^{1000}</td>
</tr>
<tr>
<td>$j = 3$</td>
<td>MA(4)</td>
<td></td>
<td>y_3^1</td>
<td>y_3^{501}</td>
<td>y_3^2</td>
<td>y_3^{500}</td>
</tr>
<tr>
<td>$j = 4$</td>
<td>MA(6)</td>
<td></td>
<td></td>
<td>y_4^1</td>
<td>y_4^{501}</td>
<td>y_4^2</td>
</tr>
<tr>
<td>$j = 5$</td>
<td>MA(8)</td>
<td></td>
<td></td>
<td></td>
<td>y_5^1</td>
<td>y_5^{501}</td>
</tr>
<tr>
<td>$j = 6$</td>
<td>MA(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y_6^1</td>
</tr>
</tbody>
</table>

True model

$\tilde{H}_j(j') = \text{median}_{\{v\}} \{1 - \tilde{G}_j^v(j')\}.$

$\tilde{S}_v(j, j') = d_1(Y_j, Y_{j'})$

$= \frac{1}{M} \|Y_j - Y_{j'}\|^2,$

$\tilde{G}_j^v(j') = \frac{\tilde{S}_v(j, j')}{\max\{m\} \\{\tilde{S}_v(j, m)\}}.$

$m = 1, 2, 3, 4, 5, 6,$
A simulation study

Candidate model

True model

\[\tilde{S}^v(j, j') = d_2(Y_j, Y_{j'}) \]
\[= \frac{|\bar{Y}_j - \bar{Y}_{j'}|}{3s_j}, \]
\[\tilde{G}_j^v(j') = \frac{\tilde{S}^v(j, j')}{\max\{m\} \{\tilde{S}^v(j, m)\}}, \]
\[m = 1, 2, 3, 4, 5, 6, \]
\[\tilde{H}_j(j') = \text{median}\{v\} \{1 - \tilde{G}_j^v(j')\}. \]
A simulation study

$$\hat{H}_j(j'), \ g = q_{.25}$$

$$\hat{H}_j(j'), \ g = q_{.50}$$

$$\hat{H}_j(j'), \ g = q_{.75}$$

$$\hat{H}_j(j')$$

$$\hat{H}_j(j')$$
Are these results significant?

A perfect result has high values on the diagonal, and zeros elsewhere.

Measure departure from the perfect result by

$$D = \sum_{j=1}^{6} \sum_{j'=1}^{6} (w_{jj'}r_{j'|j})^2.$$

$r_{j'|j}$ is within-row rank.

$w_{jj'}$ is index-difference from the diagonal.

Null distribution of D obtained by permuting $r_{j'|j}$ 20,000 times.
A simulation study

\[\hat{H}_j(j'), \ g = q_{.25} \]

\[\hat{H}_j(j'), \ g = q_{.50} \]

\[\hat{H}_j(j'), \ g = q_{.75} \]
Many approaches to blocklength selection for the MBB in the literature, e.g., Hall, Horowitz, and Jing (1995), Buhlmann and Kunsch (1999), Politis and White (2004), Bickel and Sakov (2008).

Rely heavily on asymptotics and did not work well in our simple simulation experiments.

Heuristic: for time series with temporal dependence, choosing blocklength too large is less problematic than choosing it too small.
Sampling distribution of g as a function of blocklength, l, converges.

Not to the true sampling distribution, but to something.

Since “too long" is less problematic than “too short", we seek the smallest value of l beyond which the sampling distribution doesn’t change significantly.

Call this “acceptable" blocklength.
For the simulation study we tested blocklengths 1, 2, \ldots, 15.

<table>
<thead>
<tr>
<th>Acceptable Blocklength</th>
<th>MA Order (ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>0 2 4 6 8 10</td>
</tr>
<tr>
<td>$q_{.25}$</td>
<td>2 6 6 8 9 9</td>
</tr>
<tr>
<td>$q_{.50}$</td>
<td>2 5 7 8 9 10</td>
</tr>
<tr>
<td>$q_{.75}$</td>
<td>2 5 7 8 7 8</td>
</tr>
</tbody>
</table>
AIRS and CMIP3 models

Statistics:

- $g = q_{0.05}$
- $g = q_{0.25}$
- $g = q_{0.50}$
- $g = q_{0.75}$
- $g = q_{0.95}$

Blocklengths tested:

1, . . . , 24 (two year lag).

GPCI locations:

- [35, 235]
- [32, 231]
- [29, 227]
- [26, 223]
- [23, 219]
- [20, 215]
- [17, 211]
- [14, 207]
- [11, 203]
- [8, 199]
- [5, 195]
- [2, 191]
- [-1, 187]

CMIP3 models:

- CMRM_CM3
- GFDL_CM2_1
- GISS_MODEL_E_R
- IAP_FGOALS1_0_G
- INMCM3_0
- IPSL_CM4
- MIROC3_2_HIRES
- MIROC3_2_MEDRES
- MPI_ECHAM5
- MRI_CGCM2_3_2A
- NCAR_CCSM3_0
- NCAR_PCM1
- UKMO_HADGEM1
AIRS and CMIP3 models

Relative figures of merit, Q50

Posterior probabilities, Q50
AIRS and CMIP3 models

Other views:

Location-centric view

Model-centric view

(Relative figures of merit)
AIRS and CMIP3 models

- X_m, $m = 1, \ldots, 13$ is the location-by-statistic matrix for model m.
- Compute D, the 13×13 distance matrix between X_m and X_m for all i, j, using the Froebenius norm.
- Perform multidimensional scaling on D. (Eigenvalues: 9.87, 8.87, 6.56, 6.05, 5.25, 4.51, 4.34, 2.99, 2.41, 2.10, 1.93, 1.48, 0.)
Conclusions (1)

▶ **Statistical:**

▶ Method evaluates models according to how likely a statistic computed from observations is, given that models represent the system.

▶ No Gaussian assumptions, but blocklength selection is crucial. Subject of ongoing work.

▶ Express results as relative likelihoods or posterior probabilities. Likelihoods make comparisons easier, but probabilities are more interpretable.

▶ Computation is not a problem as long as each grid box treated separately.

▶ Next: evaluate models’ ability to capture spatio-temporal statistics. Computational issues?
Conclusions (2)

➡️ Scientific:

➡️ Which statistics are important?

➡️ Are the observational and the model variables really comparable?

➡️ What about uncertainty in the observations?

➡️ What is the overall objective?

➡️ Improve process representation?

➡️ Weights for multimodel ensembles? (“The end of model democracy?”, Knutti (2010).)
Questions, comments?

Contact Amy.Braverman@jpl.nasa.gov.

Support for this research is provided by NASA’s Earth Science Data Records Uncertainty Analysis Program.

This work was performed partially at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged. Copyright 2012, all rights reserved.

Backup Slides
For more information, see:

The moving-block bootstrap:

Original series: \(\mathbf{y}_j^1 = (y_{j1}, \ldots, y_{jN})' \).

Create an MBB series:

1. Let \(l = \text{blocklength} \), \(Q = \lfloor N/l \rfloor \), and \(S = N - l + 1 \).
2. Sample integers from the set \(\{1, \ldots, S\} \) \(Q \) times with replacement to obtain \(\{t_1^*, \ldots, t_Q^*\} \).
3. \(\mathbf{y}_{jt^*}^1(l) = (y_{jt^*}, y_{jt^*(t+1)}, \ldots, y_{jt^*(t+l-1)})' \).
4. \(\mathbf{y}_j^1(l) = \left(\mathbf{y}_{jt_1^*}^1(l), \ldots, \mathbf{y}_{jt_Q^*}^1(l) \right)' \).

Estimate sampling distribution of \(g \):

1. Create \(B \) MBB series, \(\mathbf{y}_j^1(l, b), \quad b = 1, \ldots, B \).
2. Fit kernel density estimate to \(\{g(\mathbf{y}_j^1(l, 1)), \ldots, g(\mathbf{y}_j^1(l, B))\} \) to produce \(f_j^*(g, l) \).
Moving-block bootstrap example

<table>
<thead>
<tr>
<th>Data indices</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data values</td>
<td>84</td>
<td>105</td>
<td>12</td>
<td>67</td>
<td>24</td>
<td>117</td>
<td>38</td>
<td>89</td>
<td>2</td>
<td>55</td>
</tr>
</tbody>
</table>

Block indices

<table>
<thead>
<tr>
<th>Block indices in resample 1</th>
<th>5</th>
<th>9</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data values in resample 1</td>
<td>24</td>
<td>117</td>
<td>2</td>
<td>55</td>
<td>84</td>
</tr>
</tbody>
</table>

Estimated sampling distribution of the mean

- Mean = 58.3
- Mean = 60.9
- Mean = 58.1
Blocklength selection

![Graph showing blocklength selection](image)

- **Average QQ plot intercept** vs. **Average QQ plot slope**
- **Increment** vs. **Blocklength l from (l-1)**

Legend:
- MA(0)
- MA(2)
- MA(4)
- MA(6)
- MA(8)
- MA(10)
Acceptable blocklengths for Q05
Acceptable blocklengths for Q50
Acceptable blocklengths for Q75
Blocklength selection
AIRS and CMIP3 models

Relative figures of merit, Q05

Posterior probabilities, Q05
AIRS and CMIP3 models

Relative figures of merit, Q25

Posterior probabilities, Q25
AIRS and CMIP3 models

Relative figures of merit, Q75

Posterior probabilities, Q75