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Single Cooper-pair Box (SCB)
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® Radiation coupled by an antenna

breaks Cooper pairs in the
reservoir (absorber)

* Quasiparticles tunnel onto the
island with a rate I';,proportional to
the quasiparticle density in the
reservoir

* Quasiparticles tunnel out of the
island with a rate I' . independent
of the number of quasiparticles in
the reservoir

* At steady state the probability of
a quasiparticle being present in the
island is given by
Po(Ngp)=Iin/(Iin+Tout,)

* The resulting change in the
average capacitance will be Cy=
(4Ec/E)(C,?/Cs)Po(Ngp)

* This change in capacitance will
produce a phase shift 60~2C,
/(woZOCCZ)
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® SCB capacitance x gate
voltage (in units of
Cooper Pair charge) for
different coupled optical
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e transmission through
feedline x gate voltage (in
units of Cooper Pair
charge) for different
coupled optical signal
power




Theoretical Sensitivity vs. Signal Power
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e Detector is background limited over a wide range of operation



Quantum Capacitance Detector: 5x5 Array

Gate Line

Antenna

Only center device

llluminated by lens.

Each device has a slightly
Different resonance frequency.




Experimental Setup

— Blackbody source

—— Aperture
[ 2 mm diameter
— 1.5THz band pass filter

10% band

3THz low pass filter
0.03" teflon

T Bock Black

Radiation absorber

 Black body source and filters provide 1.5THz radiation from 4.2 — 40

K. Bock Black absorbs stray 4K radiation
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Real time measurement — telegraph noise

In phase signal(V)
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Telegraph noise histograms as a function of gate voltage and optical signal power
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Quadrature Signal(V)
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* Histogram peaks trace even and odd states
* Asa function of optical power, even peak
shrinks and odd peak grows
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Dwell time distribution — optical power dependence
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Optical power dependence of tunneling rates
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Signal(V)

Response fit using tunneling rates
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Telegraph noise power spectrum density
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» Telegraph noise agrees with theoretical prediction (a factor of pi too
high) using rates obtained from fits

 As predicted is the major noise source (> phase noise due to offset
charges, > amplifier noise)




Phase shift x gatevoltage as a function of black body source temperature
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Spectrum analyzer response
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Gatevoltage swept at 1kHz, spanning 6 peaks
Peak at 6kHz is the signal



Signal(V)

Response and responsivity
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Amplitude of 6KHz peak as a function of
optical signal power.

Fit comes from simulation of device
based on telegraph noise measurements

Responsivity dR/dP
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Fresnel lens array

Lens array made by Dan Wilson using an electron beam lithographytechnique
developed by Paul Maker, Dan Wilson and Rich Muller at JPL




Fresnel lens array

* Measured relative optical signal intensity
using response of individual QCD pixels

e Usinga4mm aperture aligned to the
center of the array

* Some pixels responses are missing (only
16 channels found)

Increasing pixel frequency
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Fresnel lens array

* Sorted optical simple amplitudes
» Stepscorrespond to pixels equidistant form
center of the array
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Quadrature Signal(V)

Measurements of Response versus optical power for various gate sweep rates
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Absorber width reduced to
50nm - higher impedance —
better matchto antenna
Aperture was changed to
500um

Diffraction causes
illumination to be about the
same for all pixels

Response similar from pixel
to pixel

What causes sweep rate
dependence?



Sweep rate dependence model

Photon
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Sweep rate dependence model

Detailed balance equation
dNgy, P

at A

P
2 | | 2 |

Nqgp = number of quasiparticles

P= optical signal power

n = conversion efficiency from photon energy to quasiparticles~ 0.57
R= recombination rate

[in=tunneling rate from absorber to island = KNgp

[eff= effective tunneling rate fromisland to absorber

Model for Feff-> T, ;r = /T2, + SR?

At the end of each sweep quasiparticlesare dumped back into reservoir. If the
sweep rate (SR) is faster than the intrinsic tunneling out time lNout, then [, -+~ SR.

If SRis much slower, I s~ Ty



Sweep rate dependence

Steady state solution

nhv
Ngp = (TPR + Lerr)/(R+ K))
PR is the photon arrival rate, hu the photon energy, A the absorber superconductinggate

The signal is given by

[ A A
S == A eff = =
Copp 4+l MVap | & \/20.6PR+Feff

Ais a constant (depending on the electronics)
and 20.6is the average number of quasiparticles generated by a 1.5THz photon
In an Aluminum absorber



Quadrature Signal(V)

Sweep rate dependence = calibration of photon arrival rate!
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Noise measurements
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NEP measured with power calibration

Photon shot noise limited!
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Noise agrees with telegraph noise
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One attempt - Capacitively Coupled QCD

Better confinement of quasiparticles
(no galvanic contact to antenna)

LEI 3.0kY X500

LEI 3.0k 3,500 1,um_ WD 7.5mm



R(V)

Sweep ratedependence of CCQCD
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Increased lNout- consistent
with smaller difference
between absorber and island
gap —detrimental to
performance

Decreased recombination
rate (largerisland area) —
good for performance
Optical coupling seems to be
better from calibrated
photon arrival rate (probably
better matching)

Overall performance about
the same, slightly worse
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Better antenna design?

Simulations on the antenna plus Fresnel lens
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" ultiple Reflections aon the lens-air interface
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Far Field:

Low aperture efficiency: 20%

Lens geometry or double slot antennaillumination?
Center frequency off from 1.5THz (discrepancy
between HFSS and CST?)

Far Fields
Low aperture efficiency: 20%
Lens geometry or double dipole antenna illumination?
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Simulations on the antenna plus Fresnel lens

* |tseems that the antennais not illuminating the side of the lens.
e Antennaoptimum operating frequency is around 1.2THz. Need to scale
its dimensions down to work properly at 1.5THz
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Simulations of new design antenna plus Fresnel lens and QR coating

* Lessreflection on the lens — air interface
* Use parylene as anti-refection coating

 Antenna dimensions modified to center at
1.5THz

Better antenna illumination, but sill low
aperture efficiency (24%)
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Conclusion

* Achieved photon shot noise limited NEP at 200pum wavelength in a
5x5 array
* Novel way of calibrating absorbed optical power
* Fresnel lenses working
* Introduced special filters to cut down noise through coaxes
* Capacitively coupled QCD results show quasiparticle trapping seems
to work well in regular QCDs
* Next
* Redesign antenna for better efficiency
* Tweak Fresnel lens fabrication for better lens profile





