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‘ Understanding the role of CO, in climate change

Ground-based networks

Measurement Programs
NOAA ESRL Carbon Cycle
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» Point measurements, sparse coverage

» Longest CO, measurement (continuous
since 1957)

» Observation from surface ~500m

» High temporal resolution, accuracy and
precision

Air-craft Campaigns

~ Source: C. fickétt-}ieapg; LSCE

» Regional measurements

» Infrequent flights/ operations
» Varying altitudes accessible
» Vertical profiles

» High accuracy and precision
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Watching the Earth breathe: monitoring CO, from space

The earth observing system afternoon
constellation(“A-train”)

Space-borne platforms are extending the
atmospheric CO, record by providing high quality
measurements with unprecedented coverage and
density in space and time.

Currently installed systems are passive
systems. These systems rely on
reflected light from sun, therefore have
inherent limitations

» Variable sensitivity at different solar
angles

An actiye %8'6%1?&%%@1 lidargremote
sensing woyld aligwmaniiering of CO,
emission over nights, days and
$ea$MRed SN over d?:ré%méc&e low®
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Active remote CO, monitoring

Laser Absorption Spectrometer
Integrated path differential absorption (IPDA)
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Active remote CO, monitoring

Laser Absorption Spectrometer

Integrated path differential absorption (IPDA) CO, molecular absorption specira
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Single-frequency narrow linewidth lasers at 2.05 um for
CO, lidar systems
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Semiconductor DFB lasers for 2.05 um lidar systems

Fiber lasers and solid state lasers

v High output power

v" Long coherence length ( narrow linewidth)
v" Circular beam ( M? ~ 1)

x Bulky

x Low efficiency

x High maintenance costs

x Reliability issues

x Large thermal budget

Unsuitable for airborne and space-borne
applications

Distributed feedback semiconductor lasers

v

v

Compact

High efficiency

Better reliability

No moving parts ( less susceptible to vibrations)
Low maintenance cost

Lower output power

Larger linewidth

Poor beam quality ( M2 > 1)

>30 mW fiber-coupled output power

< 100 KHz linewidth

< 1MHz frequency stability
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Laterally coupled DFB lasers @ 2um

Schematic drawing of laterally coupled DFB laser

Ti-Pt-Au contact
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» Single-mode optical waveguides are etched
into low-index cladding layer

» Second order gratings are etched along side
ridges
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Laser chips: test and measurements

Devices are cleaved into 2 mm long
bars

Power (W)

The facets are coated AR/Passivated (
front/back)

Mounted on gold plated submounts and
wire-bonded

LIV curve for a mounted laser measured at
different temperatures
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Intensity (a.u.)

Electroluminescence and lasing spectra

Sub-threshold electroluminescence spectra
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Gain peak is offset from the DFB lasing wavelength: Allow for DFB

operation at higher currents before spurious FP modes show up in the
lasing spectrum.
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Linewidth measurement techniques

Heterodyne technique
Beat two similar laser with small frequency
offset and look at the beating spectrum
Relatively simple to implement
Requires very stable lasers to minimize
frequency drift
Self-delayed homodyne technique

Beat one laser with its delayed replica

Requires long (>20 km) of single mode
optical fiber ( not readily available at 2 um)

Is insensitive to frequency jitter

>

Frequency noise spectra

Convert frequency fluctuations into
amplitude fluctuations

Detect amplitude fluctuation

Frequency noise spectrum contains

linewidth data

il ool Lol

1/f contribution

Schawlow-Towns
linewidth

Frequency
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Frequency to amplitude conversion

Scanning Fabry-Perot interferometer
transmission at laser fixed current

3_0 L 1 L 1 1 ] 1 ]

Amplitude (a.u.)

20 25 3.0 35 4.0 4.5

Piezo Voltage (V)
Fabry-Perot FSR: 1.5 GHz

Resonance quality factor: 250

Jet Propulsion Laboratory
California Institute of Technology

11



‘ Frequency to amplitude conversion

Amplitude (a.u.)

Scanning Fabry-Perot interferometer Converted frequency fluctuations into
transmission at laser fixed current amplitude fluctuations
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By biasing the interferometer on one if its transmission slopes,
frequency deviations are converted into amplitude fluctuations.
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8f (MHz)

Frequency to amplitude conversion

33

Calibrated frequency fluctuations

Power spectral density of frequency
fluctuations
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Power spectral density function has laser linewidth data and reveals contributors
to the overall laser lineshape profile

The spurious peaks between 1-20 KHz arise from the piezo element
resonances
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‘ Measured frequency noise spectrum

Measured frequency noise spectrum at

different injection currents
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Voigt profile with Gaussian contribution
dominating the lineshape describes laser

lineshape.
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‘ Laser linewidth vs. injected current

Schawlow-Townes laser linewidth versus inverse of
injected current above threshold
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Laser linewidth increases at higher temperature due to change in
gain peak detuning and increase in linewidth enhancement factor (o)
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‘ Linewidth-measurement time

: : . 100 ps
Estimated laser linewidth versus measurement 18
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Summary

» High power DFB lasers at 2 um wavelength range were demonstrated
» Lasers show extremely narrow Schawlow-Townes linewidth (1KHz)

» In operation, laser linewidth is limited by technical noise (1/f)

» Locking lasers to a reference cell eliminates/suppresses 1/f noise

» These performances make these lasers suitable for CO, monitoring lidar systems
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Facet coating

Measured

Reflectivity (%)

1t Calculated "

0.3% reflectivity at 2.05 um

68 nm AlLO,, n = 1.61

185 nm ALO,, n=1.61
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