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Understanding the role of CO2 in climate change 
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Ground-based networks 

 Point measurements, sparse coverage 
 

 Longest CO2 measurement (continuous 
since 1957) 
 

 Observation from surface ~500m 
 

 High temporal resolution, accuracy and 
precision 

Air-craft Campaigns 

 Regional measurements 
 

 Infrequent flights/ operations 
 

 Varying altitudes accessible 
 

 Vertical profiles 
 

 High accuracy and precision 

Source: NOAA-ESRL Source: C. Pickett-Heaps, LSCE 
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Watching the Earth breathe: monitoring CO2 from space 
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The earth observing system afternoon 
constellation(“A-train”) 

Source: NASA 

Space-borne platforms are extending the 
atmospheric CO2 record by providing high quality 
measurements with unprecedented coverage and 
density in space and time. 

Currently installed systems are passive 
systems. These systems rely on 
reflected light from sun, therefore have 
inherent limitations 
 
 Variable sensitivity at different solar 

angles 
 

 Inability to observe high altitude 
targets during local winter 
 

 Limited SNR over oceans due low 
surface reflectivity 

 
 

An active scheme using lidar remote 
sensing would allow monitoring of CO2 
emission over nights, days and 
seasons to produce CO2 
measurements without seasonal, 
latitudinal, or diurnal bias. 
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Active remote CO2 monitoring 
 Laser Absorption Spectrometer 

4 

Integrated path differential absorption (IPDA) 
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Active remote CO2 monitoring 
 Laser Absorption Spectrometer 
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Integrated path differential absorption (IPDA) CO2 molecular absorption spectra 

Single-frequency narrow linewidth lasers at 2.05 µm for 
CO2 lidar systems    
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Semiconductor DFB lasers for 2.05 µm lidar systems 
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Fiber lasers and solid state lasers 
 
 High output power 

 
 Long coherence length ( narrow linewidth) 

 
 Circular beam ( M2 ~ 1) 

 
x Bulky 

 
x Low efficiency 

 
x High maintenance costs 

 
x Reliability issues 

 
x Large thermal budget 
 

 
 
 
 

 
 

Unsuitable for airborne and space-borne 
applications  

Distributed feedback semiconductor lasers 
 
 Compact 

 
 High efficiency 

 
 Better reliability 

 
 No moving parts ( less susceptible to vibrations) 

 
 Low maintenance cost 

 
x Lower output power 

 
x Larger linewidth 

 
x Poor beam quality ( M2 > 1) 

 
 
 
 
 

 
 

 >30 mW fiber-coupled output power 
 

 < 100 KHz linewidth 
 

 < 1MHz frequency stability 
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Laterally coupled DFB lasers @ 2µm 
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Schematic drawing of laterally coupled DFB laser 

 Single-mode optical waveguides are etched 
into low-index cladding layer 
 

 Second order gratings are etched along side 
ridges 
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Laser chips: test and measurements 
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Devices are cleaved into 2 mm long 
bars 
 
The facets are coated AR/Passivated ( 
front/back) 
 
Mounted on gold plated submounts and 
wire-bonded 
 
 

LIV curve for a mounted laser measured at 
different temperatures 

small temperature dependence  
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Electroluminescence and lasing spectra 
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Sub-threshold electroluminescence spectra  
Measured lasing spectra at 10 C 

Gain peak is offset from the DFB lasing wavelength: Allow for DFB 
operation at higher currents before spurious FP modes show up in the 
lasing spectrum. 
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Linewidth measurement techniques 
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Heterodyne technique 
 Beat two similar laser with small frequency 

offset and look at the beating spectrum 
 

 Relatively simple to implement 
 

 Requires very stable lasers to minimize 
frequency drift 
 
 

Self-delayed homodyne technique 
 Beat one laser with its delayed replica 

 
 Requires long (>20 km) of single mode 

optical fiber ( not readily available at 2 µm) 
 

 Is insensitive to frequency jitter 
 
 
 

Frequency noise spectra 
 Convert frequency fluctuations into 

amplitude fluctuations 
 

 Detect amplitude fluctuation 
 

 Frequency noise spectrum contains 
linewidth data 

 
 
 

Schawlow-Towns 
linewidth 

1/f contribution 
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Frequency to amplitude conversion  
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Scanning Fabry-Perot interferometer 
transmission at laser fixed current  

 

Fabry-Perot FSR: 1.5 GHz 
Resonance quality factor: 250 
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Frequency to amplitude conversion  
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Scanning Fabry-Perot interferometer 
transmission at laser fixed current  

 

Converted frequency fluctuations into 
amplitude fluctuations 

 

By biasing the interferometer on one if its transmission slopes, 
frequency deviations are converted into amplitude fluctuations. 
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Frequency to amplitude conversion  
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Calibrated frequency fluctuations Power spectral density of frequency 
fluctuations 

 

Power spectral density function has laser linewidth data and reveals contributors 
to the overall laser lineshape profile 
 
The spurious peaks  between 1-20 KHz arise from the piezo element 
resonances 
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Measured frequency noise spectrum 
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Measured frequency noise spectrum at 
different injection currents  

Estimated laser lineshape with a Voigt 
profile fit 

Schawlow-Townes linewidth contribution 
decreases with increasing power before it 
rebroadens at current s above 120 mA 

Voigt profile with Gaussian contribution 
dominating the lineshape describes laser 
lineshape.  
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Laser linewidth vs. injected current 
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Schawlow-Townes laser linewidth versus inverse of  
injected current above threshold 

Laser linewidth increases at higher temperature due to change in 
gain peak detuning and  increase in linewidth enhancement factor (α) 
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Linewidth-measurement time 
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Estimated laser linewidth versus measurement 
time 

For measurement times longer than 1 ms (>1 KHz 
bandwidth), average 1/f fluctuations set the upper 
limit for laser linewidth 

100 µs 

12 ms 
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Summary 
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 High power DFB lasers at 2 µm wavelength range were demonstrated 
 

 Lasers show extremely narrow Schawlow-Townes linewidth (1KHz) 
 

 In operation, laser linewidth is limited by technical noise (1/f) 
 

 Locking lasers to a reference cell eliminates/suppresses 1/f noise  
 

 These performances make these lasers suitable for CO2 monitoring lidar systems 
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Facet coating 
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