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The Carbon Cycle
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@ Fossil Fuel CO, Emissions: Top Emitters

In recent years, the

Global Carbon Project, 2011 largest increases in
fossil fuel emissions
have occurred in

developing countries.

Emissions by some

developed countries

declined due to the

global economic
crisis.

.

— China is now thé
largest single emitter,
but its per capita

emissions are still

Crisp, GOSAT and OCO-2



@ What Controls Atmospheric Carbon Dioxide?

» Natural systems including the ecean and
plants on land' both absorb and emit carbon
dioxide to the atmosphere

» Currently SHESENTAtUNal systems are
— abgBoing aboutshalfiofithe carbon dioxide
fitted by human activities
— limiting the rate oficarbon dioxide buildup
anditsimpactonine Earthsiclimate
-~ -
»  Eundamental questions:_‘ l

sVhatprocesses, are responsible for N PR
absorbing this 'CO,? S o

« Why-does the sink strength ‘'vary ' i
dramatically from year to year?

« Will the nature, location and strength of
these CO, sinks change in the future?
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Billions of Tons of Carbon/ Year

What Processes Regulate CO, Sinks?
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What natural
processes are
currently
absorbing almost
half of the CO,
emitted by human
activities?

Why does the
amount of CO,
that stays in the
atmosphere
change so much
from year to
year?

We don’t know.



Global Measurements from Space are
Essential for Monitoring Atmospheric CO,

To limit the rate of atmospheric carbon dioxide buildup, we must
— Control emissions associated with human activities
— Understand & exploit natural processes that absorb carbon dioxide

We can only manage what we can measure

Plumes from medium-sized power
plants (4 MtC/yr) elevate X, levels

by ~2 ppm for 10’s of km downwind .
[Yang and Fung, 2010]. These variations are superimposed on
a background of “CO, weather”

—
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Primary Advantage of Space-based Data:
Spatial Coverage at High Resolution

\\\\\\

» Ground based measurements - greater precision and sensitivity to CO, near the
surface, where sources and sinks are located.

« Space-based measurements — improve spatial coverage & resolution.

« Source/Sink models - assimilate space an ground-based data to provide global
insight into CO,, sources and sinks

P
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Measuring CO, from Space

* Record spectra of * Retrieve variations in « Validate measurements
CO, and O,
absorption in
reflected sunlight
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Driving Requirements for Space Based
CO, Measurements

Requirements that drive the design of space-based CO, missions include:

« Sensitivity (Precision)
— Spatial variations in X, are small (< 2%)

« Accuracy
— Small biases can introduce large regional-scale flux errors

« Spatial coverage
— Ocean and land
— Limited to clear sky

« Spatial resolution
— Adequate to resolve spatial gradients

« Lifetime
— Atmospheric CO, varies over the seasonal cycle and from year to year

ACOS Crisp, GOSAT and OCO-2 10
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High precision is Essential for Monitoring CO,
Sources and Sinks from Space

» CO, sources and sinks must be inferred from small spatial variations in
the (387 =5 ppm) background CO, distribution

* The largest CO, variations occur near surface
« Space based NIR observations constrain column averaged CO,, X,

* Xco2 Must be measured with a precision of < 1 ppm on regional scales
to resolve the small variations associated with sources and sinks

15000
January 2009 @ Interratioral Dateline
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Spatial Resolution

A Small Footprint:
* Increases sensitivity to CO, point sources
* Minimum measureable CO, flux is
inversely proportional to footprint size

* Increases probability of recording cloud free
soundings in partially cloudy regions

* Reduces biases associated with optical path
length uncertainties over rough topography

Agqua MODIS Clear Sky Fraction: 5 Nov 2000
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Coverage: Obtaining Precise Measurements
over Oceans as well as Continents

« The ocean covers 70% of the Earth and 2) Single-souriding meas error (1
absorb/emit 10 times more CO, than all

human activities combined

sigma), NADIR  ppm
PR

M T T

» Coverage of the oceans is essential to
minimize errors from CO, transport in and
out of the observed domain

Near IR solar measurements of CO, over the

ocean are challenging Single-sounding meas error (1 sigma), GLINT __ pem

» Typical nadir reflectances: 0.5t0 1% e =

» Most of the sunlight is reflected into a
narrow range of angles, producing the
familiar “glint” spot

Glint and nadir measurements can be
combined to optimize sensitivity over both
oceans and continents

T T [ I [
0050101502 03 04 06 08 1 1316 2 3 4 b5

OCO single sounding random errors for
nadir and glint [Baker et al. ACPD, 2008].

6
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Making Precise CO,
Measurements from Space

« High resolution spectra of reflected sunlight in near ;g
IR CO, and O, bands used to retrieve the column

average CO, dry air mole fraction, X4, 2 15
— 1.61 um CO, band: Column CO, T of__ el Eriey
— 2.06 um CO, band: Column CO,, Aerosols é — NIR Absorption
— 0.76 um O, A-band: Surface pressure, clouds, < >

0Co

aerosols
* Why high spectral resolution? 00 02 04 06 08 10 1.2
— Enhances sensitivity, minimizes biases Averaging Kernel (arb. units)
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* O, A-band at 760 nm provides constraints on b
surface pressure, optical path length, and thin
cloud/aerosol distribution

FERC=

 Absorption in weak CO, band at 1610 nm is
almost linearly dependent on CO, column

L |
T T e
st )

-n||||||||i|||||-n||||||||i|—

+ Strong CO, band at 2060 nm e
« Somewhat less sensitive to the CO, 1
column abundance |

* Very sensitive to clouds and aerosols T |
 Also sensitive to water vapor column

abundance and temperature profile

 Simultaneous retrievals in these three band
provide X, estimates

=
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Remote Sensing of CO, using Reflected Sunlight:
GOSAT and OCO/0CO-2

« GOSAT (2009)
» Optimized for spectral and spatial coverage

= Collects 10,000 soundings every day

- 10-15% are sufficiently cloud free for CO, &CH,
retrievals, limited coverage of oceans.

= 3-4 ppm (1%) precision: can detect strong sources

« 0CO-2 (2013)
» Optimized for high sensitivity and resolution

= Collects up to 10° soundings/day over a narrow swath

= Smaller footprint ensures that >20% all soundings
are cloud free

= 1 ppm (0.3%) precision adequate to detect weak
sources & sinks

= Produces global maps in Nadir and Glint on alternate
16-day repeat cycles, yielding global maps in both
models once each month

ch) Crisp, GOSAT and OCO-2 16
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GOSAT-OCO Collaboration

The OCO and GOSAT teams formed a close partnership
during the implementation phases of these missions to:

N\,
— Cross calibrate the OCO instrument and TANSO-FTS
— Cross validate OCO and GOSAT X, retrievals

against a common standard . % o
The primary objectives of this partnership were to:

— Accelerate understanding of this new data source
— Facilitate combining results from GOSAT and OCO

r * -
.

3-day ground track repeat
cycle resolves weather measurements along track

—
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@

The Launch of GOSAT & Loss of OCO

24 Feb 2009

GOSAT launched successfully on OCO was lost a month later when its
23 January 2009 launch system failed
ACOS Crisp, GOSAT and OCO-2 18




The ACOS/GOSAT Collaboration

* |Immediately after the loss of OCO, the GOSAT
Project manager invited the OCO Team to
participate in GOSAT data analysis

« The ACOS team is collaborating closely with the S
GOSAT teams at JAXA and NIES to: S

— Conduct vicarious calibration campaigns in ff :
Railroad Valley, Nevada, U.S.A. '

— Retrieve Xo, from GOSAT spectra
— Model development & testing
— Data production and delivery

— Validate GOSAT retrievals by comparing
GOSAT retrievals with TCCON
measurements and other data

@ Crisp, GOSAT and OCO-2 19




Interpolated Meteorology
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Retrieving X.o, from GOSAT Spectra
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ACOS GOSAT X o, Seasonal Cycle

1
ik
s
L.
-135 -90 -a5 a5 %0 135
e
e = B
- T

ﬂﬂﬁ

ff?

45

%0

frfrj’r//f%

r}ﬂ/’/ i ﬁfﬂﬁ

E{Jan 2010

M’fﬁﬁﬁm

c’__

45

90

135

- -90

'”)rfr '|JIIJI' .

o
_/’_;ﬁ?,r"“’
[

i

%«%
Y ﬁf-ﬁ@ﬂﬁﬂl

f’:/}./i_b“-’t —

««r'ff" B

45

2010 o

90

(H-Gain Only)

oe 09

-60

A

o

D o
{

!

09

-90 -45 o 45 50 135

,sw,/fff/w;sém ﬁﬁwmh
. .« UeC R

135 80 135

——
o “a’iﬁ S5 J ffzr’“*fﬂl-« .

«%""j".
”.I'?lfJ f% Bl Iﬁfif i
)  oMar20t0

80 135 80 135

09 [ o

i CF Febzomm

z\H? /—“"_}L“ﬁvei

“¢f~"r
) ,,;%ﬁ \ﬂf@fz@wﬁ!f
e:,.

H
1»”'

; L May 2010

45 0 135 -135 -90 -45 o 45 50 135

Crisp, GOSAT and OCO-2 23



Validation of GOSAT Products against
TCCON Reduces Regional Scale Bias
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GOSAT X, retrievals are compared with those from the
Near-simultaneous observations are ground based Total Carbon Column Observing Network
acquired over TCCON station. (TCCON) to verify their accuracy
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Comparing GOSAT Gap-Filled Maps with
Models

Augtjst 7-12, 2009
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GOSAT Methane Retrievals

Yoshida et al. GOSAT CH, Retrievals, 2011
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@ New Carbon Cycle Products:

Chlorophyll Fluorescence
Courtesy of C. Frankenberg et al. 2011.
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Chlorophyll Fluorescence ;1'5

« Between 0.5 and 2% of
the sunlight incident on a
healthy plant is reemitted
as fluorescence.

o
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« The intensity of the 660 680 700 720 740 760 780 800
fluorescence is Wavelength (nm)
proportional to the CO, Chlorophyll fluorescence can be quantified by
uptake by the plant monitoring the filling of solar Fraunhofer lines in the

GOSAT O, A-band channel.

—
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Global Maps of Chlorophyll Fluorescence
from GOSAT Measurements

Courtesy of C. Frankenberg et al. 2011.
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« The Good News: Global maps of chlorophyll fluorescence from GOSAT
observations are providing new tools for studying the global carbon cycle.

« The Bad News: Neglecting chlorophyll florescence can introduce biases in
space based of X, retrievals that use O, A-band to constrain the optical path

6
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The OCO-2 Mission is Under
Development

3-Channel Dedicated Spacecraft TBD Launch
Vehicle

Spectrometer (JPL)

Formation Flying as Part
of the A-Train
Constellation

NASA NEN (GSFC)

and SN (TDRSS) Mission Operations (OSC)
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ReIa!y\A
Optics )
Detector

» 3 co-bore-sighted, high resolution,
imaging grating spectrometers

*+ 0O, 0.765 um A-band

« CO, 1.61 um band 0. A-Band

. CO, 2.06 um band
Resolving Power ~ 20,000 €0, 1.61;1m Band
Optically fast: /1.8 (high SNR) i
Swath: < 0.8° (10.6 km at nadir)

» 8 cross-track footprints @ 3 Hz

« 1.29 x 2.25 km at nadir
Mass: 140 kg, Power: ~105 W

Collimator

CO, 2.06 um Band

(M

Changes from OCO %
* Modified to mitigate residual image, slit The OCO-2 instrument is more sensitive than

aligninent and stay ight anomalies the GOSAT TANSO-FTS, especially over dark
oundin pre-flight tesiing _ scenes, and takes 48 to 96 times as many
* New cryocooler replaces obsolete unit soundings over each orbit.
—
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Pre-Flight Instrument
Qualification and Characterization

Observations of the sun with the flight instrument taken during the thermo-
vacuum tests provided an end-to-end test of the instrument performance.

1.6 um CO2

.
Flight Instrument

Sy

lM‘
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G

Crisp, GOSAT and OCO-2

Activities are being performed at
the Orbital Sciences Corporation
facility in Dulles, VA

The spacecraft structure, system
harness, and avionic assemblies
have been integrated and tested

Most subcontracted items have
been received, integrated, and
tested

Spacecraft bus delivery also
expected this spring

33



Instrument + Spacecraft Bus = Observatory
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Launch Date Driven by Launch Service
Provider

Delta Il

 No root cause identified for
either OCO or Glory Taurus XL
launch vehicle anomalies

______

Falcon-9

« Competitive selection process
for OCO-2 has commenced

i

A
o - a,
T T

-

 Please, no communications
with prospective bidders until a
selection is announced

Credit: Steve Greenberg, JPL
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From http'://spacex.corﬁ/r‘féjf'(';ér‘ig.php

A Couple of Possibilities for OCO-2
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Flying in Formation in the A-Train

GCOM-WA1

CloudSat
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@ Conclusions

* Space-based remote sensing observations hold substantial promise for
future long-term monitoring of CO, and other greenhouse gases
— These measurements will complement those from the existing ground-based

greenhouse gas monitoring network with increased: spatial coverage and
sampling density

* The principal challenge is the need for high precision (~0.3% or 1 ppm)
« GOSAT has provided a valuable pathfinder for analysis techniques

« 0OCO-2is the first NASA mission designed to demonstrate the space-
based measurement precision, coverage, and resolution needed to:

— Quantify CO, emissions sources on the scale of individual states or countries

— Find the natural “sinks” that are absorbing over half of the CO, emitted by
human activities

— Provide the data needed to assess greenhouse gas mitigation policies

R
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