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Sub-grid variability of microphysics

 The model provides grid mean:
- qcl Ncl qr’ Nr

* Microphysical processes are non-
linear and occur at local scales
[Pincus and Klein, 2000; Rotstayn et
al., 2000; Larson et al., 2001]

— Autoconversion: Direct conversion of
cloud water to rain water

by

7 — qc

M = aN'bl

— Accretion: Collection of cloud water
by falling rain

M. =a(qq)

* Traditionally the coefficients are
derived from LES and tuned when
applied to the GCM




Morrison-Gettleman microphysics sub-
grid variability

* MG microphysics prescribes sub-grid variability in cloud
condensate as a gamma distribution with v =

rv—1 _Vq_;

P(q;)=(q':]v gc[v]e 0

* Convenience of the gamma distribution PDF approach.

aq;b _>M IP ac |v,b]
Grid-Mean

* The grid mean process rate can be calculated using the original
microphysical coefficients modified by an enhancement factor
E[v,8] related to the sub-grid variability




Sub-grid variability effect on accretion

E|v,b]

Inverse relative variance (v)

0.5 1 8
Process rate Enhancement factor (E)
Autoconversion 6.08 3.22 1.23
Immersion freezing 3.00 2.00 1.13
Accretion by rain 1.13 1.07 1.01

Morrison and Gettleman, 2008

* Without including cloud/rain covariance the
enhancement factor is small for accretion



Global Simulations

Results courtesy of
Huan Gou (GFDL)

Motivation: Climate Process
Team

—  Replace four parameterizations
[PBL, Shallow, Large scale cloud,
microphysics] with a unified [CLUBB-
MG] parameterization

—  Problems with too much cloud in
shallow cumulus regimes. Why?

Increasing accretion causes
— Decreased cloudiness
— Increased solar absorption

— Better agreement with
observations

CAPT simulations: SWABS
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Including cloud/rain covariance

e MG scheme does not consider covariance
between g_”and g,

* Consider cloud/rain covariance of the form

r 1B
qr o aqc

* Then the grid mean accretion rate

Grid-Mean



How does E* vary with 67
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* Enhancement maximized for moderate values
of 6.



E* variation with 6 and v

Increasing variance in cloud water

Stronger cloud/rain covariance
* Depending on sub-grid covariability of g, and g,
E* can be substantially greater than 1.

7



Estimating 6 from CloudSat & MODIS

CloudSat Orbit#2007304082219_08024
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Estimating 6 from CloudSat & MODIS

Mean beta value

beta
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e 6=0.88 +£0.87
* B shows little regional variation



Regional pattern of cloud water variance

* Variability in cloud water shows a much more clear regional
variability than does the covariance parameter 6.

e Recall that the sensitivity of accretion to 8 increases with
decreasing v.

Annual Mean nu [ ]
s B e . wiin E U, b=1.15,
aﬂfx > 1006

EStratocum

1.00_]

Increasing variance in cloud water

Stronger cloud/rain covariance



Estimates from a cloud model

Dycoms-Il RFO2 simulations
WRF model

90x90x1.5 km domain
300x300X30 m grid spacing

Two-moment microphysics in
each species

N T T TR

0.61 1.00 1.17
v 1.03 1.12 1.31
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Wang and Feingold, 2009




Comparing observations to E*

E[v, b=1.15, 8]

WRF

0 1 2 3

* Note: Sampling bias towards stratocumulus regime.




Concluding thoughts

Sub-grid covariance of cloud and rain can have a large effect on
microphysical process rates.

— B and v represents a computationally efficient way to implement the
first order effects in MG and can be bounded by observations

Analogous covariance analysis can probably be applied to N, & g, to
inform autoconversion enhancement factor

— Cloud model output

— Some combination of MODIS/POLDER/Calipso (Need for a dedicated
mission)

Much bigger picture: sub-grid variability and covariance should be
unified across parameterizations (i.e. radiation and microphysics)
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