JPL is able to apply its technologies, facilities, and expertise to assist our partners in product improvement and problem solving to reduce risk.

Contamination Control Engineering
JPL Contamination Control Engineering

Brian Blakkolb
Contamination Control Engineering Group Leader
Jet Propulsion Laboratory, Caltech

Brian.K.Blakkolb@jpl.nasa.gov
818.354.3905
Contamination Control Engineering for Payloads, Systems, and Missions

- JPL has extensive expertise fielding contamination sensitive missions—in house and with our NASA/industry/academic partners.
- Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads.
 - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al
 - Propulsion, thermal control, robotic sample acquisition systems
- Contamination control engineering across the mission life cycle:
 - System and payload requirements derivation, analysis, and contamination control implementation plans
 - Hardware Design, Risk trades, Requirements V-V
 - Assembly, Integration & Test planning and implementation
 - Launch site operations and launch vehicle/payload integration
 - Flight ops
- Personnel on staff have expertise with space materials development and flight experiments
 - LDEF, MATLAB, MSX, EOIM-3, SAMMES
Contamination Control Process
- Telescope Aperture: 50 cm
- Optical Design
 - Modified Ritchey-Chretien with Aspheric corrected
 - Far UV band 0.135—0.180 \(\mu \) m
 Near UV 0.180—0.300 \(\mu \) m
- System Cleanliness Requirements
 - Molecular: < 0.065 \(\mu \) g/cm
 - Particulate: < 1 PAC
AIRS—Atmospheric Infrared Sounder

- **Spectral Range**
 - IR 3.74 -- 15.4 μm
 - Visible/NIR 0.41--0.94 μ
- **58 K focal plane**
 AIRS focal plane
 cryocooler, developed under contract with TRW
- **Scanning Optics**
- **Cleanliness Requirements**
 - Molecular: <1 μg/cm²
 - Particulate: < 0.02 PAC
Specialized Capabilities

• Molecular Contamination Spectral Effects (MCSE) Chamber
 – *In situ* measurement of optical effects of contamination

• Molecular Contamination Investigation Facility (MCIF)
 – Multiple temperature materials outgassing measurement

• Extensive library of materials outgassing data
 – MCIF (Modified MSFC-1559)
 – ASTM-E595

• Contamination Modeling
 – JPL-Developed molecular contamination transport codes
 • Space vacuum: System- and payload-level
 • Diffusion/convection environments: Habitable and extra-terrestrial atmospheric
 • System contamination issues associated with electric propulsion
Contamination Transport Modeling at JPL

Convection/Diffusion:
MSL at Mars (8Torr CO₂)

Vacuum Transport: Juno Vault Venting

Contamination Transport Driven by Wind Direction

- Concentration is a very strongly-peaked function of the wind direction.
- Worst case wind direction, were used to set the outgassing requirement.
- Vent flux requirement of 100 ng/cm²/hr set on the MSL vent, the largest source of contamination on the rover, easily meets the SAM Atmospheric Inlet contamination limit of 1 ppb.
Characterization of Contaminants

Molecular Contamination Spectral Effects (MCSE) Chamber

- Measure and evaluate the transmissive and reflective spectral effects of lenses and mirrors from VUV to Infrared wavelength. Turbo molecular drag (oil-free)—range: 1K to 5E-07 torr Dual cryo-pumped vacuum – total pressure: 1E-07 to 1E-09 torr

- Molecular Contamination Monitoring Capabilities
 - Quartz crystal microbalances (QCM): One cryo-quartz crystal microbalance (CQCM)– range 5K to 350K, 10 MHz Aluminum-plated crystals, Sensitivity: 3.5x10^-9 gm/cm2/Hz
 - Residual Gas Analyzer (RGA)

- VUV-UV-Visible-NIR-IR Spectroscopy
 - Reflectance, Transmission
 - 120 nanometers to 25 microns

- Temperature control
 - K-Cell: +20 C to +165 C
 - Target control range: 15 K to 350 K

- BRDF (future capability)
 - Nd:Yag (1.06 nm)
 - CO2 (10.6 nm)
 - HeNe (635 nm)
TEST CONFIGURATION AND CONDITIONS: The test can be conducted using the provided hardware/electronic components (source contaminant), which would be placed inside the Knudsen-Cell type sample heat exchanger, inside the test chamber.

- Pressure: < E-05 Torr
- Three Quartz Crystal Microbalances
 - Independent temperature control
- Sample heat exchanger continuously variable to simulate mission operational temperature profile
Conclusions

- JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments
- JPL has extensive experience fielding and managing contamination sensitive missions
- Excellent working relationship with the aerospace contamination control engineering community

These laboratory activities are carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.