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The DESDynI Saga 

“Get creative …” 
 In June 2011, NASA directed JPL to study Synthetic Aperture Radar mission 

options that fit within available funding, under several funding scenarios for 
the Earth Science Division 

 Launch dates and mission duration were to be considered flexible, with 
additional funds available in later years 
 

“… but focus on affordability” 
 The team was directed to explore affordable options, including international 

collaboration, and associated risks 
 Science should be influenced, but not constrained, by the Decadal Survey 
 Saving cost may come at expense of payload or mission capability  

 
 Studies were conducted with input and feedback from DESDynI 

Science Study Group 
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Concepts studied 

 Five general concepts were explored, with variants on each 
1. US-only scaled back radar capability to single-pol, half-swath 
2. US-only scaled back to fit in smaller launch vehicle 
3. International partner co-develops Tandem L-band radar spacecraft 
4. International partner provides spacecraft; multi-frequency mission 
5. International partner provides spacecraft, and launch vehicle; multi-

frequency mission 

 For all concepts, the fundamental reflector-based SweepSAR 
architecture was preserved 
 Previous studies suggested significant cost penalties for planar arrays of 

this size class 
 Strong investment in current instrument risk reduction activities (see next 

slide) 

 
 Remainder of this talk will focus on concepts 2 & 5 above 
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SweepSAR Airborne Demo Data Processing 

 Invested in demonstration of SweepSAR in an 
airborne environment using Ka-band multi-channel 
prototype system 

 Hardware and processing demonstrate efficacy of 
SweepSAR in configurations that are not ambiguity 
limited 

 Future tests will explore transmit blanking gaps and 
ambiguity performance. 
 

 Hensley/Ghaemi, Nov 16, 2011    4 
Image from Flight Line 7 DBF Image from Flight Line 3 



Case Study for Scaled-down Flight System 

 Mission Concept Summary – fast-repeat focus 
 Allow reduced coverage and science, including polar coverage 
 Require 2-day repeat  
 Allow narrow-swath observations over select areas (e.g. Los Angeles) for 

response. 
 Preserve  SweepSAR with reflector (9-m reflector; 8 element feed) 
 Preserve quad-pol or dual-pol 
 Consider L-band or S-band 

 
 Science 

 Not a global science mission; targeted science for fast-evolving areas, and 
response 
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Scaled-down Flight System Configuration 

NADIR 

FLIGHT 

9m-Diameter 
Reflector 

Minotaur IV 
class fairing 

Previous designs required 12-15 m 
reflectors, double-length feed, and 
considerably larger launch vehicles 



Radar Quad-Pol Performance, Case 2 

 S-Band  
 8-Beam, 3-taps 
 40 MHz BW 
 550 km accessible swath 

 24-54o incidence angle range 

 < -25dB NEσ0 

 < -20dB Ambiguity 
 8 Boresight Roll Angles for full 

coverage 
 

 Key Parameters: 
 PRF: 3000-3800 Hz 
 Processing BW: 1100 Hz 
 Pulse width: 40 µsec 
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Two-day repeat orbit regional access 
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Earth surface 

Viewing Geometry 

75
3 

km
 

Far Swath 
Near Swath 
Accessible Swath 

8 Boresight Roll Angles for full 
coverage of access area 



Two-day repeat orbit global access 

 Swaths are defined according 
to spacecraft roll position 

 Access extent limited by 
performance thresholds, not 
roll limitations 

 Additional swath is available 
at lower performance 

 Yaw flip would allow 
additional access regions 

 Due to roll-rate limitations, 
beam steering is not agile 
 Systematic regional 

acquisition plan 
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Interseismic Requirements over Scale 
L-band Performance 

 2-D vector measurements through 
ascending/descending, right or left 

• Margin introduced through additional data not 
considered 
- Polarimetric data 
- Overlap due to orbit convergence 

Assumptions 

Radar Mode Single-Pol 20+5MHz 

Repeat Interval 
Interferogram 

13 days 
600 days 

Observations Asc & Des 

Wavelength 24 cm 

Correlation+ γ0e-t/T, T = 200 days (γ <  
0.1 per interferogram) 

Atmosphere 20 mm 

Product 
Resolution 1000 m x 1000 m 

Pointing Left or Right 

Stacking Period 3 years 

+ γ0 includes SNR, Geom, Vol Correlations 
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Interseismic Requirements over Scale 
S-band Performance 

 S-band performance reasonably well due to large 
number of interferograms to reduce noise 

 For interseismic applications, atmosphere 
dominates, so long interferograms are preferable, 
favoring longer wavelength systems 

  

Assumptions 

Radar Mode Single-Pol 20MHz 

Repeat Interval 
Interferogram 

2 days 
120 days 

Observations Asc & Des 

Wavelength 13 cm 

Correlation+ γ0e-t/T, T = 60 days (γ <  
0.1 per interferogram) 

Atmosphere 20 mm 

Product 
Resolution 1000 m x 1000 m 

Pointing Left or Right 

Stacking Period 3 years 

+ γ0 includes SNR, Geom, Vol Correlations 
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Targeted Deformation Performance at S-band  

 For targeted phenomena, one can use short 
period interferograms in short stacks to beat 
down atmosphere noise 

 At S-band additional bandwidth is available for 
finer resolution imaging for response 
applications 

 L-band & S-band performance are similar 
 

 
 

 

Assumptions 

Radar Mode Single-Pol 20MHz 

Repeat Interval 
Interferogram 

2 days 
14 days 

Observations Asc & Des 

Wavelength 13 cm 

Correlation+ γ0e-t/T, T = 60 days 

Atmosphere 20 mm 

Product 
Resolution 20 m x 20 m 

Pointing Left or Right 

Stacking Period 1 month 

+ γ0 includes SNR, Geom, Vol Correlations 
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Case Study for Partnered Science 

 All international partnerships recognized the benefits of frequency 
and/or baseline diversity  

 For this presentation, we consider dual-band, shared-reflector case 
 Preserve  SweepSAR with reflector (12-m reflector; multi-element feed) 
 Preserve quad-pol or dual-pol 
 Consider L-band and S-band dual-band capability 
 Attempt to design for good performance during simultaneous operation 
 Consider 12-day repeat 

 
 Science 

 Global science mission preserving original L-band radar objectives 
 Targeted science studies where S-band or dual-band is most suitable 
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Benefits of both S-band and L-band 

 Globally distributed measurements at S-band for science 
applications would be an interesting new data set 

 Combination of simultaneous S-band and L-band data would be 
extremely powerful for discriminating differential scales in many 
disciplines 

 In combination, extends the accuracy of low biomass (< 100 Mg/ha) 
estimates, and sensitivity to regrowth 

 Interferometric Correlation at S-band intermediate between C-band 
and L-band 
 Improves estimate of the ionospheric path delay relative to split 

spectrum methods where correlation is good (i.e. in moderate to low 
vegetation) 

 Extends range of deformation sensitivity to lower values where 
correlation is good  

 Greater available bandwidth at S-band than L-band could enable 
focus on some areas at finer resolution 
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SIR-C/X-SAR Dual-frequency Polarimetry 

Volcanoes 
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Glacier Topography 

Red: CHH  Green: LHV  Blue: LHH Weddell Sea, Antarctica 

SIR-C/X-SAR Dual-frequency Polarimetry 
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L-Band + S-Band Feed RF Aperture 

12x2 L-Band Patch Array 
 18 cm el spacing 
 13 cm az spacing 
 patch size: ~9 cm 

March 19, 2012 - 17 

24x1 S-Band Patch Array 
• 8.5 cm el spacing 
• patch size = λ-scaled L-Band patch size 

L&S array centers 
aligned in elevation 

 0.422m overall width  

 0.340m L-Band width 
  +0.15139m shift off-focus 

 0.082m S-Band width  
  -0.05961m shift off-focus 

feed arrays shifted from focal point in 
azimuth proportional to λ to equalize 
squint relative to beamwidth 
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Reflector Focal Point 
shifted with respect to 
array centerline 

Reflector Focal 
Point shifted off-
center in elevation 
to improve swath 



Ecosystem: (true)Quad-Pol [HH, HV, VH, VV] 
40 MHz Bandwidth 

side-by-side Az & El-Shifted L-Band 

Ecosystem: (true)Quad-Pol [HH, HV, VH, VV] 
40 MHz Bandwidth 

L-Band only, Az & El-Centered 

L-Band Quad-Pol Performance 
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• L-Band only basis case                          
 

• Re-optimized to accommodate side-
by-side S-Band, and to improve far-
swath ambiguities 



L-Band Single-Pol Performance 

Deformation: Single-Pol [HH] 
20+5 MHz Bandwidth 

side-by-side Az & El-Shifted L-Band 

Glaciers: Single-Pol [VV] 
20+5 MHz Bandwidth 

side-by-side Az & El-Shifted L-Band 
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S-Band Performance 

• Continuing to optimize design and requirements to derive an implementable 
system within technical and programmatic guidelines 
 

Ecosystem: (true)Quad-Pol [HH, HV, VH, VV] 
25 MHz Bandwidth 

side-by-side Az & El-Shifted S-Band 

Deformation: Single-Pol [HH] 
25 MHz Bandwidth 

side-by-side Az & El-Shifted S-Band 
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Future Plans 

 NASA has directed continued studies on multiple fronts for the near 
term 
 Specific guidelines define the possible mission capabilities and launch 

dates 
 Ideas described here, among others, are being explored and appear to be 

within the right trade space for affordability 
 Studies consider missions with launch dates in the 2019-2021 time frames 
 

 A science definition team has been formed to guide the science 
priorities of the mission, taking into account upcoming international 
capabilities 
 

 Partnerships continue to be the most likely means of developing a 
mission NASA considers affordable 
 Partnership discussions continue at the technical and programmatic levels 

at NASA 
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