Understanding Spacecraft Agility for Orbit Transfers on the Dawn Low-Thrust Mission

February 8, 2011
Understanding Spacecraft Agility for Orbit Transfers on the Dawn Low-Thrust Mission

Brett A. Smith,
C. Anthony Vanelli, Allan Y. Lee

02/08/12
Dawn Mission at a Glance

- **Interplanetary Cruise**
 - Launched Sep. 2007 and Vesta Orbit capture July 2011
 - Will depart Vesta and Arrive at Ceres in Feb. 2015
 - Dawn will be the first mission to enter orbit around main-belt asteroids.
 - Solar Electric Propulsion (SEP)
 - Allows for the necessary delta-V
Dawn

Dawn Mission at a Glance

- **Interplanetary Cruise**
 - Launched Sep. 2007 and Vesta Orbit capture July 2011
 - Will depart Vesta and Arrive at Ceres in Feb. 2015
 - Dawn will be the first mission to enter orbit around main-belt asteroids.
 - Solar Electric Propulsion (SEP)
 - Allows for the necessary delta-V

- **Vesta Science Campaign**
 - Three Different Science Orbits
 - Survey - 69 hr period
 - HAMO - 12.3 hr period
 - LAMO - 4.3 hr period
 - HAMO2 - 12.3 hr period
 - SEP transfer between each science orbit
Dawn

Spacecraft Configuration

- High Gain Antenna
- Ion propulsion system thrusters (2 obscured in this view; all 3 in x-z plane)
- Solar arrays (articulate around Y)
- Star trackers
- Reaction Wheels
- Inertial Reference Units
- Ion Propulsion Thruster

20 m
Dawn

Why Use Solar Electric Propulsion

• Specific Impulse from 1900-3200 sec
 – Compare with typical 200-400 sec for conventional propulsion

• Means we can carry a LOT less fuel for the same Δv
 – Dawn will ultimately deliver about 11 km/s (already has the inflight record)

• Extraordinary flexibility in mission design:
 – choice of mission objectives and launch dates

• But all this comes with a price:
 – The thrust force is very weak (91mN maximum, at early mission)
 • Trajectory Correction Maneuvers ("burns") take a long time to accomplish
 • This has ramifications for how burns are designed and executed.
 – Safing events can result in failure to burn, so there is increased emphasis quickly returning to the capability to thrust
Dawn
What is Different About Low-Thrust

• Conventional TCM structure
 – Thrust in 1 or 2 inertially fixed directions
 – Cruise Thrusting on Dawn worked in this fashion
• **Typical TCM structure**
 – Thrust in 1 or 2 inertially fixed directions
 – Cruise Thrusting on Dawn worked in this fashion

• **Low thrust Orbit transfers**
 – Overall Structure changes
 • Thrusting through significant portions of orbit
 • Cannot consider thrust as impulsive
 • Need to continuously change thrust direction

• **Dawn Thrust Vector Control**
 – Same actuator for ΔV and S/C control
 – How do you identify capability
 • What Can be done
Dawn

What is Different About Low-Thrust

- **Typical TCM structure**
 - Thrust in 1 or 2 inertially fixed directions
 - Cruise Thrusting on Dawn worked in this fashion

- **Low thrust Orbit transfers**
 - Overall Structure changes
 - Thrusting through significant portions of orbit
 - Cannot consider thrust as impulsive
 - Need to continuously change thrust direction

- **Dawn Thrust Vector Control**
 - Same actuator for ΔV and S/C control
 - How do you identify capability
 - What Can be done and Cannot be done
Dawn
Schedule / Timeline

• Design process done many times
 • 4 designs during S2H transfer
 • 10 Designs during H2L transfer

• Design Process must be done quick
 – One Pass Process
 • MD/NAV thrust profile (TVF) must be correct
 – not designed for a rework
 • Thrust profile is being designed before the previous design has completed
 • ACS time line is short
 – generation of momentum strategy 4-6 hours
 – ACS complexity dependent on NAV design

• We cannot fail!
 – Missing uplink could mean weeks of delay, mission re-design
• Thrust vector control (TVC)
 – control orthogonal to like of thrust
 – negligible dynamics in cruise

• TVC in orbit operations
 – Must counter gravity gradient torque
 – Provide torque to follow thrust profile
 – Must overcome gyroscopic torque of wheels

• IPS provides delta-V and Control
 – Thrust profile must consider control capabilities
 – Dynamic effects also couple into design of the thrust direction profile.
Dawn

Attitude Commanding Provides a Limitation

- 3-axis controlled Spacecraft
- FSW only allows commanding of a single axis!
- FSW constructs a 3-axis attitude to optimize solar array power
 - Operator can command a body vector (v_a) to align with an inertial vector (v_g)
 - FSW rotates the S/C bus to maximize array power
 - FSW also prefers to keep the -x face away from the sun
 - Called “Power Steering Algorithm”

- Generally works well, however:
 - Orientation is always changing
 - S/C moves relative to the sun
 - Singularity exists when the target points close to the sun
Dawn

Power Steering “Flip-Over”

- Power steering is always optimizing array pointing
 - cannot be easily circumvented
- Works well for ensuring optimal power
- Complicates thrusting while in orbit
 - Complicates constraints on the thrust profile

- Singularity case shown here
 - The amount of this effect is based on Sun angle
• Conventional thrust design process is insufficient
 – Time-varying thrust arcs
 – Dynamic effects are coupled into thrust design
 – Thrust direction and attitude are coupled

• How can we ensure a thrust design is flyable?
 – within the build timeline
 – allowing for the necessary time varying thrust directions
 – based on spacecraft capabilities
Constraints

• **Geometric**
 - Typical pointing constraint seen in TCM’s
 - Keep the sun away from some spacecraft axis
 - Dawn constraints
 - Keep thrust vector away from sun
 - Keep -X axis away from sun
Defining Thrusting Constraints for MD/NAV

Constraints

• Geometric

• Continuity

• Control Authority

• Thrust Delivery

• Continuity and Smoothness

 – Dawn’s attitude commanding results in a thrust direction defines the three axis attitude
 • Power steering always in play

 – Thrust vector profile must maintain continuity
 • Each thrust arc must be smooth

 – Attitude continuity must be considered in thrust design
Dawn
Defining Thrusting Constraints for MD/NAV

Constraints

• Geometric

• Continuity

• **Control Authority**

• Thrust Delivery

• **Control Authority**
 – ACS Dynamic constraints become thrust profile constraints
 • Rate
 • Acceleration
 • RWA Momentum Capacity
 • IPS Gimbal range of motion
 – Some geometric constraints are dynamic
 • The thrust-sun geometric constraint changes based on S/C rate.
 – The faster the S/C the farther the thrust profile must stay from the sun.
Defining Thrusting Constraints for MD/NAV

Constraints

- Geometric
- Continuity
- Control Authority
- Thrust Delivery

- Thrust Delivery
 - Execution error is now time varying
 - Function of attitude error and IPS gimbal actuation
 - No longer a single number for execution error
 - Thrust vector profile can affect thrust delivery
 - More aggressive thrust profile results in larger thrust delivery error

Thrust Delivery Error

<table>
<thead>
<tr>
<th>Percentage of Time</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>
The desire was to have simple constraints that if the thrust profile met them, it was good to fly.

- We tried many different ways to convert spacecraft constraints to thrust vector file (TVF) design constraints.
Dawn

Mapping Constraints from ACS to MD/NAV

• The desire was to have simple constraints that if the thrust profile met them, it was good to fly.
 – We tried many different ways to convert spacecraft constraints to thrust vector file (TVF) design constraints
 • Could not map backwards through the 1-to-Many problem
Dawn
A Different Approach

• What we needed
 – Fast method to verify a thrust profile is achievable

• The concept we came up with:
 quick and Simple TVF Analysis Tool (qSTAT)
 – A fast and simple simulation
 • Not High Fidelity (better is the enemy of the good)
 • Very few inputs to keep it simple
 • An indication of a PASS definitely means it will work
 – MD/NAV can use to verify designs before delivery
 • Puts a limited ACS brain in a box that the NAV team can utilize
Dawn

qSTAT Overview

• Inputs / Outputs and what it Provides
 – Inputs: TVF, S/C Trajectory, IPS Engine
 – Outputs: Plots and Constraint Checks
 • S/C rate
 • S/C acceleration
 • Attitude Error
 • IPS Gimbal Range
 • ST Occultation Duration
 • Thrust Delivery Error
 • RWA Momentum
 – Provides a fast approximation (< 1 min)
 • Models thrusting portion only

• Simplified Model Assumptions
 – Needs to work for the desired operational range case
 • extreme cases break down but are flagged by the tool as unusable
 – Mostly linear and algebraic assumptions
 – Transfer-Function represents the dynamics
 • Not a closed loop simulation
 – VnV’d against full dynamic simulation tool (Softsim)
Dawn

qSTAT Block Diagram

Inputs:
- Iterations (N)
- dawn_*.bsp
- TVF
- IPS Engine

Power Steering Alg.:
- Quat_Cmd(t)
- Transfer Function
- Quat_Est(t)

qSTAT Core
- Init. RWA Momentum
- Propagate Momentum
- Estimate Disturbance Torques
- Compute Control Torques

Cost Function:
- MIN(Gyroscopic torque)
- MIN(# forced desats)

Outputs:
- All Data
- Plots w/ constraints

Cost Function:
- Momentum
- Gimbal Angle
- ST Occultations
- Thrust Delivery
- Attitude Error

24
Dawn

qSTAT for NAV

- **NAV can run the tool with small number of inputs**
 - MD folks do not need to know the inner details of the ACS system to simulate a thrust profile design
 - qSTAT makes some assumptions about the momentum management strategy and evaluates a number of cases to provide a result
 - NAV usually runs qSTAT with 30 - 100 initial RWA momentum combinations
- **Verify and investigate**
 - NAV can use qSTAT both to verify a flight TVF design but also explore future scenarios and look for ways to make thrust profiles provide better thrust delivery error.

Maneuver Design

- MYSTIC
 - Create optimal thrust profile
- TVF
- SPK

qSTAT

- Thrust profile meets constraints?
 - no: redesign
 - yes: Finish and verify momentum plan

Attitude Control

- qSTAT
 - Develop basic momentum plan
- MomProf
 - Finish and verify momentum plan

Review
Momentum Management

- **qSTAT** is used by ACS as well as NAV
 - Since qSTAT runs a bunch of different initial momentum states and sorts them based on a cost function
 - ACS can use this to get a head start on a momentum strategy
 - The large attitude changes and rates make momentum management not straightforward
 - qSTAT has ability to insert a momentum adjust and quickly show the results
 - Graphical interaction to let ACS engineers find a good solution for the entire thrust arc
 - A tight timeline requires ACS to respond to the thrust design quickly.
Dawn
Survey to HAMO (S2H) Transfer Results

• qSTAT modeling worked very well

• Survey to HAMO transfer provided first real step into the regime of rapidly changing thrust profiles
 – Not real stressing on the system or the tools
 – Provided confidence and experience needed to do the next transfer
Dawn

S2H Attitude Error

- Very good modeling of Attitude error
• Gimbal angle predictions match flight very well
Momentum modeling is always the most challenging

- qSTAT only models thrusting portions
- Un-modeled momentum aspects that happen prior to thrusting affect predict.
 - Higher fidelity MomProf tool more accurately models entire sequence
• **Much more challenging Transfer**
 – Short orbit period
 – Larger gravity gradient torque

• **qSTAT modeling worked well**
 – Some of the model simplification begin to show up
 – Operational changes were made to reduce un-modeled behavior
 • Sequence timing

• **Provided the necessary task of identifying unflyable thrust profile designs**
Dawn

Attitude Error

- Good Match while being conservative
 - Simplified transfer function doesn’t capture all dynamics
• Gimbal prediction good
 – errors come from momentum prediction and corresponding gyroscopic torque
Dawn
H2L Momentum

- Momentum modeling was most challenging
 - small errors in initial state resulted in large errors over time.
 - qSTAT still provided sets of desirable momentum states
 - Higher fidelity tools included non-thrusting portions and matched flight more accurately
Conclusions

- Conventional maneuver design processes were inadequate
 - Long thrusting durations with the small force of SEP
 - Increased coupling between ACS and NAV teams

- Definition of quantifiable constraints proved impractical
 - Specifically for the Dawn mission, because of the attitude steering algorithm

- A time-efficient simulation tool, qSTAT, was developed
 - allowed fast verification of candidate thrust profile designs

- This approach allowed Dawn to overcome the complications of low-thrust orbit transfers
Lessons For Future Low Thrust Missions

- Navigation and ACS elements are deeply coupled on a SEP mission
 - Traditional trajectory design by finding mass-optimal or time-optimal solutions may not be suitable for low-thrust orbit transfers
 - Well-integrated tools in the ACS/NAV systems will be key in reducing risk and improving the capabilities of future low-thrust missions

- Language of Communication between the NAV and ACS worlds must be improved, for low-thrust transfers
 - New methods and techniques produce new language
 - Intuition based on conventional orbit transfer activities may not apply

- Strong system engineering is needed early-on
 - Make sure system-wide interactions are fully appreciated
 - Having people who are strong in both the NAV and ACS domains will help
Questions?