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Abstract— This paper introduces a probabilistic guidance
approach for the coordination of swarms of autonomous agents.
The main idea is to drive the swarm to a prescribed density
distribution in a prescribed region of the configuration space.
In its simplest form, the probabilistic approach is completely
decentralized and does not require communication or collabo-
ration between agents. Agents make statistically independent
probabilistic decisions based solely on their own state, that
ultimately guides the swarm to the desired density distribution
in the configuration space. In addition to being completely
decentralized, the probabilistic guidance approach has a novel
autonomous self-repair property: Once the desired swarm
density distribution is attained, the agents automatically repair
any damage to the distribution without collaborating and
without any knowledge about the damage.

I. INTRODUCTION

This paper introduces a probabilistic guidance approach
applicable to a swarm of autonomous agents. The proba-
bilistic guidance approach provides a method for each agent
to determine its own trajectory in the configuration variable
such that the overall swarm converges to a desired distribu-
tion in the configuration space. The main novel feature is that
the guidance law is probabilistic in nature, and specifies the
desired spatial probability density distribution for the swarm
rather than the exact desired paths of the individual agents.

Existing guidance methods for distributed systems allocate
agent positions ahead of time [25], [32], [34], [33], [20].
Probabilistic guidance represents a break with this approach,
and is instead based on designing a Markov chain, using
a suitable parametrization, such that the steady-state dis-
tribution corresponds to the desired swarm density.In real
time, each agent propagates its position as a statistically
independent realization of the Markov chain. The swarm
converges to the desired steady-state distribution associated
with the Markov chain. Various different schemes applicable
to swarm guidance have appeared in the literature [3], [18],
[30], [21], [28], [27], [8]. In preparing this manuscript, a
literature survey has turned up a recent paper [7] that uses
Markov chains for “swarm self-organization”, which appears
similar to how the current paper uses Markov chains for
swarm guidance. However, [7] controls the swarm using a
probabilistic “disablement” approach based on ideas taken
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from [22]. The current paper does not use disablement or
any ideas from [22], and the main results are not directly
comparable. Nevertheless, we acknowledge that the basic
idea of using Markov chains for controlling swarms is also
contained in this recent paper.

This paper presents a new approach to swarm guidance
based on Metropolis-Hastings algorithm [11], [4], [23] to
synthesize the desired Markov matrices and to guide indi-
vidual swarm agents in a completely decentralized fashion.
The probabilistic guidance development relies heavily on
the theory of Markov processes, Monte-Carlo-Markov-Chain
sampling methods [29], [10], [15], [24], [14], graph theory
[9], and Lyapunov stability analysis [26]. The development
is aided by recent research in designing fast mixing Markov
chains that converge to desired distributions and incorporate
constraints on transition probabilities [12], [6], [5], and many
classical results on convergence of Markov chains. One
example is the use of the Metropolis-Hastings algorithm
[11], [4], [23] to generate a Markov guidance policy that
is both convergent and incorporates motion constraints. A
new useful connection is made between classical Perron-
Frobenius theory [16], [2], and modern Lyapunov stability
theory [19]. This connection allows several generalizations
to be made to classical results that are particularly relevant
to designing practical guidance laws. This method allows
strict enforcement of ”keep-out” regions where agents are not
allowed, and lead to synthesis of probabilistic guidance laws
that are fast converging, fuel minimizing, and incorporate
physical motion constraints. Ref. [1] presents alternative ap-
proaches for Markov chain design for probabilistic guidance.

The paper is organized as follows: Section II and III
presents the probabilistic guidance problem formulation
and review of basic results on the Markov chain based
swarm guidance; Section IV presents useful connections with
Perron-Frobenius theory; Section V has the main results of
the paper, Theorems 4 and 5, on the Metropolis-Hastings
to synthesize probabilistic guidance laws; and Section VI
presents an illustrative example.

Notation

The following is a partial list of notation used: 0 is the
zero matrix of appropriate dimensions; ei is a vector of
appropriate dimension with its ith entry +1 and its other
entries zeros; x[i] = eTi x for any x ∈ IRn and A[i, j] =
eTi Aej for any A ∈ IRn×m; Q = QT � (�)0 implies that
Q is a symmetric positive (semi-)definite matrix; R > (≥)H
implies that R[i, j] > (≥)H[i, j] for all i, j; R > (≥)0
implies that R a positive (non-negative) matrix; v ∈ IRn

is said to be a probability vector if v ≥ 0 and 1T v = 1;



B = |A| implies that B[i, j] = |A[i, j]| for all i, j; P denotes
probability of a random variable; ∅ denotes the empty set;
‖v‖ is the 2-norm of the vector v; For P = PT � 0,
‖v‖P = ‖P 1/2v|| where P = P 1/2P 1/2 is a factorization
of P with P 1/2 = P 1/2T � 0 (for concreteness, one choice
is P 1/2 = UΛ1/2UT where P = UΛUT is an eigenvector
decomposition of P ); I is the identity matrix; 1 is the matrix
of ones with appropriate dimensions; (v1, v2, ..., vn) repre-
sents a vector obtained by augmenting vectors v1, . . . , vn
such that (v1, v2, ..., vn) ≡

[
vT1 vT2 . . . vTn

]T
where vi

have arbitrary dimensions; diag(A) = (A[1, 1], . . . , A[n, n])
for matrix A; λmax(P ) and λmin(P ) are maximum and
minimum eigenvalues of P = PT ; σ(A) is the spectrum
(set of eigenvalues) of A; ρ(A) is the spectral radius of
A (maxλ∈σ(A) |λ|); ||A||1 =

∑
i

∑
j |A[i, j]| denotes the 1-

norm of matrix A, and |||A|||1 = maxj
∑
i |A[i, j]| denotes

the induced 1-norm of matrix A; ⊗ denotes the Kronecker
product; � represents the Hadamard (Schur) product; i(A)
is the indicator matrix for any matrix A, whose entries are
given by i(A)[i, j] = 1 if A[i, j] 6= 0 and i(A)[i, j] = 0
otherwise. A directed graph G = (V,E) is defined by a
finite set of vertices V and edges E such that the edges
E ∈ V ×V contain specified ordered pairs of elements of
V. A directed graph Ga(A) = (Va,Ea) of a matrix A is
defined by letting Va be the set of integers 1, 2, ..., n and
letting E be the set of such pairs (i, j), i ∈ Va, j ∈ Va

for which A[i, j] 6= 0. The adjacency matrix Aa of a graph
G = (V,E) is defined such that Aa[i, j] = 1 if (i, j) ∈ E
and Aa[i, j] = 0 otherwise. In particular, if the graph Ga(A)
is associated with a matrix A, then Aa = i(A).

II. SWARM DISTRIBUTION GUIDANCE PROBLEM

This section describes the swarm distribution guidance
problem. The physical domain over which the swarm agents
are distributed is denoted as R. It is assumed that region
R is partitioned as the union of m disjoint subregions

Ri, i = 1, . . . ,m, such that R =
m⋃
i=1

Ri, and Ri ∩ Rj = ∅

for i 6= j. The subregions Ri are referred to as bins.
Let an agent have position r(t) at time index t ∈ IN+.

Let x(t) be a vector of probabilities, 1Tx(t) = 1, such that
the i’th element x[i](t) is the probability of the event that
this agent will be in bin Ri at time t,

x[i](t) := P(r(t) ∈ Ri). (1)

The time index t will also be referred to as the “stage” in
the remainder of the paper. Consider a swarm comprised of
N agents. Each agent is assumed to act independently of the
other agents, so that (1) holds for N separate events,

x[i](t) := P(rk(t) ∈ Ri), k = 1, ..., N (2)

where rk(t) denotes the position of the k’th agent at time
index t, and the probabilities of these N events are jointly
statistically independent. We refer to x(t) as the swarm
distribution. This is to be distinguished from the ensemble
of agent positions {rk(t)}Nk=1 which, by the law of large

numbers, has a distribution that approaches x(t) as the
number of agents N is increased.

The distribution guidance problem is defined as follows:
Given any initial distribution x(0) such that x(0) ∈ IRm,
x(0) ≥ 0, 1Tx0 = 1, it is desired to guide the agents
toward a specified steady-state distribution described by a
probability vector v ∈ IRm

lim
t→∞

x[i](t) = v[i] for i = 1, . . . ,m, (3)

subject to motion constraints specified in terms of an adja-
cency matrix Aa as follows:

ATa [i, j]=0 ⇒ r(t+ 1) /∈ Ri when r(t) ∈ Rj , ∀t ∈IN+.
(4)

Here, the adjacency matrix Aa of the edges of a directed
graph specifies the allowable transitions between bins.

The desired distribution v has the following interpretation:
We have m bins in the physical space corresponding to
where agents can be located, and the element v[i] is the
desired probability of finding an agent in the i’th bin. If
there are N agents total, then Nv[i] describes the expected
number of agents to be found in the i’th bin. Let n =
[n[1], ..., n[m]]T denote the actual number of agents in each
bin. Then the number of agents n[i] found in the i’th bin
will generally be different from Nv[i], although it follows
from the independent and identically distributed (iid) agent
realizations that v = E[n]/N , and from the law of large
numbers that n/N → v as N becomes large. Hence the
vector v is a discrete probability distribution specifying the
desired average fraction of agents in each bin of the physical
domain, that, in practice, will only be approximated by
the histogram n/N of agents. However, the nature of the
approximation is that v is equal to the mean E[n/N ] of the
agent histogram, and by the law of large numbers, n/N → v
as N becomes large.

The idea behind probabilistic guidance is to control the
propagation of probability vector x, rather than individual
agent positions {rk(t)}Nk=1. While the actual distribution
of swarm agent positions n/N will generally be different
from x, it will always be equal to x on the average, and
can be made arbitrarily close to x by using a sufficiently
large number of agents. In this sense, probabilistic guidance
exploits the law of large numbers to simplify the coordina-
tion of swarms comprised of a statistical ensemble (i.e., a
significantly large number), of agents.

III. DECENTRALIZED PROBABILISTIC SWARM
GUIDANCE

A. Probabilistic Guidance Algorithm (PGA)

Suppose that it is desired for the swarm to assume a
particular agent distribution described by the vector v. The
key idea of the probabilistic guidance law is to synthesize
a column stochastic matrix [16], [2] M ∈ IRm×m, which
we call Markov matrix for PGA, with v as its eigenvector
corresponding to its largest eigenvalue 1 [16], [13], that is,
M must satisfy

M ≥ 0, 1TM = 1T , Mv = v. (5)



The entries of matrix M are defined as transition probabili-
ties. Specifically, for any t ∈ IN+ and i, j = 1, . . . ,m

M [i, j] = eTi Mej = P (r(t+ 1) ∈ Ri|r(t) ∈ Rj) . (6)

i.e., an agent in bin j transitions to bin i between two
consecutive stages with probability M [i, j]. The matrix M
determines the time evolution of the probability vector x as

x(t+ 1) = Mx(t) t = 0, 1, 2, . . . . (7)

Note that the probability vector x(t) stays normalized as
1Tx(t) = 1 for all t ≥ 0. This follows from the fact
that 1Tx(0) = 1 and 1TM = 1T , which implies that
1TM tx(0) = 1TM (t−1)x(0) = . . . = 1Tx(0) = 1. The
probabilistic guidance problem becomes one of designing a
specific Markov process (7) for x that converges to a desired
distribution v. The constraints M ≥ 0 and 1TM = 1T

simply state that the probability of moving from one bin
to another is nonnegative and the sum of probabilities of
motion from a given bin is one. The constraint Mv = v
guarantees that v is a stationary distribution of M , which
follows from the equation (7). Here having Mv = v implies
that: If x(T ) = v for some T ≥ 0 then x(t) = v for all
t ≥ T . This implies that v is a stationary distribution of
M , i.e., the probability distribution of the agents does not
change with time. The evolution of the probability density is
described for a time-varying M by the following theorem.

Theorem 1: Suppose we have a swarm of N agents in a
partitioned region R = ∪mi=1Ri where Ri∩Rj = ∅ for i 6= j.
Let x[i](t) = P(r(t) ∈ Ri) where r(t) is the position vector
of an agent at time instance t, and

M [i, j](t) := P(r(t+ 1) ∈ Ri|r(t) ∈ Rj). (8)

Then the probability density vector x over R evolves as

x(t+ 1) = M(t)x(t). (9)
Proof: Since the event of an agent being in bin i at time

t is mutually exclusive from it being in another bin j and
these events are exhaustive, i.e., they cover all possibilities.
In this case, the Total Probability theorem [31] implies that,
P(r(t + 1) ∈ Ri) =

∑m
i=1 P(r(t + 1) ∈ Ri|P(r(t) ∈

Rj))P(r(t) ∈ Rj). Hence, since M [i, j](t) = P(r(t+ 1) ∈
Ri|P(r(t) ∈ Rj)), x[i](t + 1) = P(r(t + 1) ∈ Ri), and
x[j](t] = P(r(t) ∈ Rj), the equation (9) follows.

B. Independent Agent Realizations
The probabilistic guidance algorithm is implemented by

providing a copy of the matrix M to each of the agents,
and then having each agent propagate its position as an
independent realization of the Markov chain

Probabilistic Guidance Algorithm (PGA)
1) Each agent determines its current bin, e.g., rk(t) ∈

Ri.
2) Each agent generates a random number z that is

uniformly distributed in [0, 1].
3) Each agent goes to bin j , i.e., rk(t + 1) ∈ Rj , if

j−1∑
l=1

M [l, i]≤ z ≤
j∑
l=1

M [l, i].

The first step determines the agent’s current bin number.
The last two steps sample from the discrete distribution
defined by the column of M corresponding to the agent’s
current bin number.

C. Asymptotic Convergence

A matrix M that satisfies constraints (5) is a column
stochastic matrix where v is the eigenvector corresponding
to eigenvalue 1. It is desired for x to asymptotically con-
verge to v, i.e., for v to be a globally attractive stationary
distribution for M . The main result of this section shows
that asymptotic convergence to v is ensured by imposing an
additional constraint on the design of matrix M , denoted as
the spectral radius condition,

ρ(M − v1T ) < 1. (10)

Following theorem gives a necessary and sufficient condi-
tions for asymptotic convergence to v.

Theorem 2: Consider the Markov chain with column
stochastic matrix M such that Mv = v. Then for any a prob-
ability vector x(0) ∈ IRm, it follows that limt→∞ x(t) = v
for the system (7) if and only if ρ(M − v1T ) < 1.

Proof: First we show that

(M − v1T )t = M t − v1T . (11)

By inspection (11) is true for t = 1. Suppose that (M −
v1T )t−1 = M t−1 − v1T , then (M − v1T )t = (M −
v1T )t−1(M − v1T ) = (M t−1 − v1T )(M − v1T ) = M t −
M t−1v1T − v(1TM) + v(1T v)1T = M t − v1T − v1T +
v1T = M t − v1T . Since x(0) ≥ 0 and 1Tx(0) = 1,

x(t) ≥ 0 and 1Tx(t) = 1, t = 0, 1, . . .

Let e(t) := x(t) − v be the error relative to the desired
distribution v. Then, by using the above observations, we
can express the error dynamics as e(t+ 1) = x(t+ 1)− v =
Mx(t)− v = Mx(t)− v1Tx(t) = (M − v1T )x(t) = (M −
v1T )(e(t) + v) = (M − v1T )e(t) + (M − v1T )v
= (M − v1T )e(t). This proves that e evolves as

e(t+ 1) = (M − v1T )e(t), t = 0, 1, . . . (12)

If ρ(M − v1T ) < 1 then the error dynamics will be
asymptotically stable, i.e., limt→∞ e(t) = 0. This implies
that limt→∞ x(t) = v. Next we want the show that if
limt→∞ e(t) = 0 for all x(0) then ρ(M − v1T ) < 1. Using
(11), we have

e(t) = (M − v1T )te(0) = (M − v1T )t(x(0)− v)
= (M − v1T )tx(0)− (M t − v1T )v
= (M − v1T )tx(0)− v + v = (M − v1T )tx(0).

The fact that limt→∞ e(t) = 0 for any x(0) implies that

lim
t→∞

e(t) = lim
t→∞

(M − v1T )tx(0) = 0 (13)

The vector x(0) in (13) is constrained as x(0) ≥ 0 and
1Tx(0) = 1, and can be chosen, for example, as any of the



basis vectors {e1, ..., em}. The fact that this basis set spans
IRm ensures that,

lim
t→∞

(M − v1T )t = 0 (14)

which implies that ρ(M − v1T ) < 1.

D. Motion Constraints

In practice, it is convenient to impose additional con-
straints on matrix M to restrict allowable agent motion. For
example, it may not be desirable or even physically possible
for an agent in bin j to move to some other bin i in a single
time step. This transition is mathematically disallowed by
setting the associated element of M to zero, i.e., M [i, j] = 0.
More generally, connectivity constraints are imposed on the
adjacency matrix for a graph associated with M . A directed
graph Ga = (Va,Ea) is defined where Va is a set of m
vertices chosen to correspond to the m bins of R, and Ea
are the edges of the graph defined such that the edge (i, j)
exists if and only if there is an allowable transition from
bin i to bin j. The graph is directed in the sense that edge
(i, j) which denotes an allowable transition from i to j, is
distinguished from edge (j, i) which denotes the transition
back from j to i. Let Aa be the corresponding adjacency
matrix for this graph, that is, Aa[i, j] = 1 if the transition
from bin i to bin j is allowable, and is zero otherwise. The
motion constraints are imposed on M as follows,

(11T −ATa )�M = 0. (15)

The transpose of matrix Aa is needed because, by definition,
elements Aa[i, j] of Aa describe transitions from i to j while
elements M [i, j] of M describe transitions from j to i.

E. Decentralization and Self-Repair Properties

Under the conditions on policy matrix M indicated in
Theorem 2, the swarm will converge asymptotically to a
statistical equilibrium condition achieving the desired distri-
bution v, starting from any arbitrary initial distribution x(0).
This has two important implications:
(i) The probabilistic guidance law is completely decentral-

ized and converges the swarm to any desired distribution
starting from any initial distribution

(ii) The probabilistic guidance law provides an autonomous
capability for decentralized swarm repair

Implication (i) is a direct result of Theorem 2 and the fact
that agents in the swarm do not require any knowledge
from, or communication with, other agents of the swarm.
Implication (ii) is an important property that follows from
the first property but requires some explanation. Suppose the
swarm achieves a desired distribution and is in a statistical
steady-state condition. If there is any damage to the swarm,
in the sense of agents becoming destroyed, non-functional
or dropping out, the statistical steady-state distribution is
perturbed. Under the probabilistic guidance law, the swarm
will automatically re-converge from its perturbed state to
its desired steady-state distribution, thereby repairing the
damage. It is emphasized that knowledge is not needed of the

damage or of the specific agents involved. The guidance law
simply continues as if nothing has happened and the swarm is
repaired. The self-repair response is completely autonomous
and decentralized.

IV. CONNECTION WITH PERRON-FROBENIUS THEORY

The notion of a primitive matrix (see [2], [16]) is of central
importance in Perron-Frobenius theory of positive matri-
ces. The next result establishes a connection with Perron-
Frobenius theory by showing the relationship between the
spectral radius condition (10) and primitive matrices.

Lemma 1: Consider a matrix M ∈ IRm×m such that
M ≥ 0, 1TM = 1T , and Mv = v for some v > 0. Then:
ρ(M − v1T ) < 1 if and only if M is a primitive matrix.

Proof: Suppose that M is primitive. By using Theorem
Thm. 8.5.1 in [16]

lim
t→∞

M t = v1T .

Now using Equation (11)

lim
t→∞

(M − v1T )t = lim
t→∞

M t − v1T = v1T − v1T = 0,

which implies that ρ(M − v1T ) < 1.
Next suppose that ρ(M − v1T ) < 1. This implies that

lim
t→∞

(M − v1T )t = 0 ⇒

lim
t→∞

‖(M − v1T )t‖∞ = lim
t→∞

‖M t − v1T ‖∞ = 0.

Consequently, for ε := 1
2 mini v[i] > 0, there exists some

q ∈ NI+ such that, for all k ≥ q,∣∣Mk[i, j]− v[i]
∣∣ < ε ∀i, j = 1, . . . ,m.

This implies that Mk[i, j] > v[i]−ε > ε/2 > 0 for all k ≥ q
and i, j = 1, . . . ,m. Hence Mq > 0, which implies that M
is primitive by using Theorem 8.5.2 in [16].

The primitivity condition Mk > 0 of Theorem 8.5.2 in
[16] ensures asymptotic convergence of x(t) to v > 0 in
Markov Chains for which M is not strictly positive, i.e.,
M ≥ 0 [16]. However, the results of Lemma 1 and Theorem
2 taken together, indicate that the primitivity condition can be
replaced by the new spectral radius condition ρ(M−v1T ) <
1 (cf., (10)), for proving asymptotic convergence to v > 0.
It must be observed that the condition that v > 0, which is
central to Perron-Frobenius theory, does not appear in the
asymptotic convergence result of Theorem 2. The relaxation
of condition v > 0 to v ≥ 0 allows specific elements of v
to have zero probability. In this case, M will be reducible
with the corresponding zeroed states forming a subset of
transient states, and the non-zeroed states forming a subset
of recurrent states.

Theorem 3: Consider a matrix M ∈ IRm×m such that
M ≥ 0, 1TM = 1T , and Mv = v for some v ≥ 0 where,
without loss of generality, v = (0, v̂) and v̂ ∈ IRq, v̂ > 0.
Then it follows that ρ(M − v1T ) < 1 if and only if M has
the following structure

M =
[
M1 0
M2 M3

]
where (16)



M1 ∈ IR(m−q)×(m−q) and M3 ∈ IRq×q are nonnegative
matrices such that M3 is primitive and ρ(M1) < 1.

Proof: Since v = (0, v̂), Mv = v implies that[
M1 M4

M2 M3

]
︸ ︷︷ ︸

= M

[
0
v̂

]
=
[

0
v̂

]
⇒ M4v̂ = 0.

Since M4 ≥ 0 and v > 0, we have M4 = 0. This proves
the form of M given by (16).

Note that

M − v1T =
[

M1 0
M2 − v̂1T M3 − v̂1T

]
,

which is block lower triangular. This implies that ρ(M −
v1T ) < 1 if and only if ρ(M1) < 1 and ρ(M3 − v̂1T ) < 1.
By Lemma 1, ρ(M3 − v̂1T ) < 1 is equivalent to M3 being
primitive.

Remark 1: For any matrix X ∈ IRm×m such that X ≥ 0,
the condition ρ(X) < 1 is known to be equivalent to the
condition that I − X is an M-matrix (cf., Theorem 2.5.3
[17]). M-matrices arise naturally in many diverse fields such
as large scale systems, networks, and interconnected systems.
In the context of Theorem 3, the condition that ρ(M1) < 1
can be equivalently interpreted as I−M1 being an M-matrix.
Now we can state a direct corollary to Theorem 2.

Corollary 1: Suppose that the PGA is used for swarm
guidance with a column stochastic matrix M such that Mv =
v where v = (0, v̂) with v̂ > 0 and x(t+ 1) = Mx(t) with
x(t) defined by (1). Then for any initial swarm distribution
x(0) ∈ IRm, it follows that limt→∞ x(t) = v if and only
if M has the structure described by (16), where M3 is a
primitive matrix and ρ(M1) < 1.
The ability to specify v ≥ 0 rather than v > 0 is important
in guidance problems where agents are constrained to be
located outside of certain specified regions.

Corollary 2: Suppose that the PGA is used for swarm
guidance with a column stochastic matrix M such that Mv =
v where v = (0, v̂) with v̂ > 0 and x(t+ 1) = Mx(t) with
x(t) defined by (1). Then for any initial swarm distribution
x(0) ∈ IRm: limt→∞ x(t) = v only if:
(i) i(M3) is an adjacency matrix of a strongly connected

graph,
(ii) M2 6= 0,
where M is of the form described by (16). Furthermore, if
condition (i) is satisfied and trace(M3) > 0, then M3 is
primitive.

Proof: By using Corollary 1, M3 being primitive
is a necessary condition for convergence to v. Since this
implies that M3 is irreducible, hence i(M3) must represent
a strongly connected graph, which follows from [2], Thm.1.3
and 2.1. Asymptotic convergence to v also necessitates that
ρ(M1) < 1, which is from Corollary 1. However M2 = 0
implies that M1 is a column stochastic matrix with an
eigenvalue of 1, which is a contradiction. This proves (ii).
Now suppose that i(M3) is an adjacency matrix of a strongly
connected graph. If trace(M3) > 0, which implies that M3

is irreducible, M3 is primitive by using Lemma 2.28 in p.34
of [2].

The above corollary implies that the adjacency matrix Aa
must satisfy the following. Consider the partition of v as
done in Corollary 1, v = (0, v̂). Note that this partitioning
can always be done via renumbering the bins, hence there is
no loss of generality. Then suppose Aa is decomposed as:

Aa =
[
A1 A4

A2 A3

]
, where A3 ∈ IRq×q. (17)

Then A3 must be the adjacency graph of a strongly connected
graph and A2 6= 0 in order to have a convergent M .

V. METROPOLIS-HASTINGS ALGORITHM FOR
SYNTHESIS OF M

In this section we present several approaches to con-
structing M matrices that satisfy the desired conditions for
probabilistic guidance.

Definition 1: Given a vector v such that v ≥ 0 and 1T v =
1, and a specified adjacency matrix Aa, the set of admissible
matrices M is defined as,

M(v,Aa) := {M ∈ IRm×m : M ≥ 0,

1TM = 1T , Mv = v, (11T −ATa )�M = 0}.
(18)

Note that the set M(v,Aa) is completely characterized via
linear constraints on the matrix M . Methods will be pre-
sented for synthesizing matrices M that are in the admissible
set M(v,Aa) in (18), and that satisfy the spectral radius
condition (10) needed for asymptotic convergence.

A. Overview of the Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm [29], [4] is a
Markov Chain Monte Carlo (MCMC) method for obtaining a
sequence of random samples defined by propagating a special
Markov chain. The Markov chain is defined by starting with
an arbitrary stochastic matrix K, denoted as a proposal
matrix, and transforming it into a Markov matrix M having
a specified stationary distribution v > 0, by making use of
an intermediary matrix F , denoted as an acceptance matrix.

Definition 2: [Metropolis-Hastings Algorithm] The M-H
algorithm is defined by the matrix M constructed as follows,

M [i, j] =


K[i, j]F [i, j] if i 6= j

K[j, j] +
∑
k 6=j

(1− F [k, j])K[k, j] if i = j

(19)
where the matrix K[i, j] satisfies K ≥ 0 and 1TK = 1T ; the
desired stationary distribution satisfies v > 0; and the matrix
F [i, j] satisfies the following two conditions for i 6= j,

0 ≤ F [i, j] ≤ min (1, R[i, j]) (20)

F [j, i] =
1

R[i, j]
F [i, j] (21)

where R[i, j] =
v[i]K[j, i]
v[j]K[i, j]

i, j = 1, . . . ,m. (22)

Note that swapping i and j in condition (20) yields,

0 ≤ F [j, i] ≤ min (1, R[j, i]) (23)



By construction, condition (20) is satisfied if and only if

condition (23) is satisfied. Hence, the function F [j, i] derived

by swapping indices in F [i, j] must simultaneously satisfy

the two conditions (21) and (23).

Definition 3: The reversibility condition for a Markov

matrix M with respect to a probability vector v is,

M [i, j]v[j] = M [j, i]v[i], i = 1, ...,m; j = 1, ...,m. (24)

Note that the reversibility condition (24) only needs to be

checked for i �= j since it holds trivially for i = j.

Lemma 2: Let the reversibility condition (24) hold for a

Markov matrix M with respect to a probability vector v.

Then v is a stationary solution to the Markov chain, i.e.,

Mv = v.

Proof: Let w = Mv. Then, w[i] =
∑m

j=1 M [i, j]v[j] =⎛
⎝ m∑

j=1

M [j, i]

⎞
⎠

︸ ︷︷ ︸
1

v[i] = v[i].

Lemma 3: The matrix M defined by the M-H algorithm

(19)-(22) is a Markov matrix with v as a stationary solution,

i.e., Mv = v.
Proof: (Proof of M ≥ 0,1T M = 1T ). Clearly since

K ≥ 0 and v > 0, it follows that M ≥ 0. Now consider∑m
i=1 M [i, j] for any j,

∑m
i=1 M [i, j]

=
X
i�=j

K[i, j]F [i, j] + K[j, j]+
X
k �=j

(1− F [k, j])K[k, j]

=
X
i�=j

K[i, j]F [i, j] + K[j, j]+
X
k �=j

K[k, j]−
X
k �=j

F [k, j]K[k, j]

=K[j, j] +
X
k �=j

K[k, j] = 1,

which follows from 1T K = 1T . This shows that 1TM =1T .

(Proof of Mv = v). For the M-H algorithm, M [i, j] =
K[i, j]F [i, j] when i �= j with F [j, i] = F [i, j]/R[i, j]. This

implies that, for i �= j,

M [i, j]v[j]
= K[i, j]F [i, j]v[j] = K[i, j]R[i, j]F [j, i]v[j]

= K[i, j]
v[i]K[j, i]
v[j]K[i, j]

F [j, i]v[j] =K[j, i]F [j, i]v[i]

=M [j, i]v[i].

Hence, the reversibility condition (24) holds for Markov

matrix M with respect to a probability vector v. By Lemma

2, it follows that Mv = v.

B. Alpha-Min Acceptance Matrix

One particular choice for the acceptance matrix F is of

the alpha-min form,

F [i, j] = α min(1, R[i, j]) where α ∈ (0, 1]. (25)

In this case, we can similarly choose F [j, i] =
α min(1, R[j, i]) while satisfying conditions (20), (23), and

(21). To see that, we only need to consider the case when

R[i, j] ≥ 1 (switching indices will imply the case when

R[i, j] < 1). Then F [i, j] = α and F [j, i] = αR[j, i],

since R[j, i] = 1/R[i, j] < 1. This implies that F [j, i] =
F [i, j]R[j, i] = F [i, j]/R[i, j] Note that if K[i, j] = 0 then

M [i, j] = M [j, i] = 0. Similarly having K[i, j] > 0 and

K[j, i] > 0 imply that M [i, j] > 0 and M [j, i] > 0.

Consequently, when v > 0, Aa = AT
a and matrix F is

chosen as given in (25), we can impose the desired motion

constraints on the proposal matrix K in order to guarantee

their satisfaction by the matrix M and i(M) = AT
a . Based

on these insights, the M-H algorithm is applied to the

probabilistic guidance problem.

C. M-H for Probabilistic Guidance

Theorem 4: Consider the M-H algorithm, for some v > 0,

given by (19) where the proposal matrix satisfy i(K) =
AT

a for some strongly connected symmetric adjacency matrix

Aa = AT
a , and matrix F is constructed using alpha-min

form (25). Then for the resulting matrix M , it follows that

M ∈ M(v, Aa) and ρ(M − v1T ) < 1.

Proof: The previous discussion of the alpha-min ac-

ceptance matrix established that equation (25) results in a

matrix F satisfying conditions (20), (23), and (21). It also

shows that 1T M = 1T and Mv = v. As observed earlier,

Aa[j, i] = K[i, j] = 0 implies that M [i, j] = 0, and

A[j, i] = sign(K[i, j]) = 1 implies that M [i, j] > 0, that

is, i(M) = AT
a . Hence (11T −AT

a )
M = 0, and therefore

M ∈ M(v, Aa). Next since Aa is strongly connected, there

exists some k such that (Ak
a)T = i(M)k > 0, which implies

that M is primitive via Thm. 8.5.1 in [16]. Consequently

ρ(M − v1T ) < 1 by using Theorem 3.

D. M-H with Gaussian Proposal Matrix

Next we will describe an algorithm that uses the alpha-

min acceptance matrix (25), and constructs a proposal matrix

K by making use of a Gaussian distribution. Given Aa

be as above, the connectivity matrix for the graph with all

possible links between the bins that satisfies Am−1
a > 0 and a

Gaussian distribution with a mean μ and a standard deviation

δ > 0 given by g : IR → IR

g(z; η, δ) =
1

δ
√

2π
e−(x−μ)2/2δ2

. (26)

Let ci, i = 1, . . . , m, be the vectors describing the center of

each bin. Then we form K as follows: Given δi > 0 i =
1, . . . , m and j = 1, ...,m

K[j, i]=

⎧⎪⎪⎨
⎪⎪⎩

g(‖cj − ci‖; 0, δi) if Aa[i, j] = 1, i �= j
0 if Aa[i, j] = 0

1 −
∑
k �=i

K[k, i] if j = i

(27)

The proposal matrix K is chosen such that i(K) is an

adjacency matrix of a connected graph, that is, i(K) = AT
a ,

which follows from the fact that K[i, j] > 0 for Aa[j, i] = 1.

Also note that, when Aa = AT
a , we have K[i, j] = K[j, i],

i.e., K = KT , which implies that R[i, j] is independent of

K, i.e., R[i, j] = v[i]
v[j] .



E. Metropolis-Hastings Algorithm with Transient States

Use of the Metropolis-Hastings (M-H) algorithm to con-

struct the matrix M in (19) is not well defined in the special

case where the desired distribution v has transient states,

that is, v = (0, v̂) where v̂ > 0. A modification of the

M-H algorithm is introduced to deal with this important

special case. Suppose that there are mt transient states in

the desired distribution and mr = m − mt recurrent states.

Further, suppose that the bins numbered from mt − m1 + 1
to mt (for some m1), are all bins corresponding to transient

states that are directly connected to the bins corresponding

to the recurrent states, which are numbered from mt + 1 to

m, as indicated by matrix Aa. Then let the bins numbered

from mt − m2 + 1 to mt − m1 (for some m2), be all the

bins corresponding to the transient states that are directly

connected to the bins numbered from mt − m1 + 1 to mt,

and so on. If Aa corresponds to a connected undirected

graph, then we continue this process to group all the bins

corresponding the transient states. This construction leads to

a desired density vector v of the following form

v = (v1, . . . , vs, v̂) where v1 = 0, ..., vs = 0, v̂ > 0, (28)

and the bins corresponding to v1 are directly connected to

the bins of v2, the bins of v2 are directly connected to the

bins of v3, ad so on. We also define index sets Ir = {mt +
1, . . . , m}, Is = {mt − m1 + 1, . . . , mt}, Is−1 = {mt −
m2 + 1, . . . , mt − m1} . . .. Hence Ir is the index set of

recurrent states and Is is the index set of transient states

directly connected to recurrent states, and so on.
Theorem 3 implies that the matrix resulting from the

modified M-H algorithm must generate a matrix M of
the form given by (16), where M3 is a primitive matrix
and ρ(M1) < 1. The following modified M-H algorithms
achieves this objective:

M [i, j]=

8>>><
>>>:

as in (19) if i ∈ Ir, j ∈ Ir

0 if i ≤ mt, j ∈ Ir

1/(
P

k∈Ir
Aa[j, k]) if i ∈ Ir, j ≤ mt, Aa[j, i]=1

1/(
P

k∈Ik+1
Aa[j, k]) if i ∈ Ik+1, j ∈ Ik, Aa[j, i]=1

0 elsewhere
(29)

The modified construction of matrix M results in the

following form

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

0 0 . . . 0
M1,2 0 . . . 0

...
. . .

. . .
...

0 . . . M1,s 0

⎤
⎥⎥⎥⎦ 0

[
0 . . . 0 M2,1

0 . . . . . . 0

]
M3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(30)

where M1,k, k = 1, ..., s, and M2,1 are columns stochastic

matrices. Assuming that Aa represents a connected graph,

M3 is primitive by the above construction. Furthermore, M
is clearly a column stochastic matrix such that Mv = v. The

question of whether ρ(Ma) < 1 is addressed next. Consider

a vector η > 0 as follows (vector 1 in each entry has the

size corresponding to that of the decomposed v)

η = (α21, . . . , αs1,1) where

αs =
1

|||MT
1,s|||1 + 1

αk =
αk+1

|||MT
1,k|||1 + 1

, k = 2, . . . , s − 1.

Then η > 0 and

(I−M1)η=
`

α21, α31− α2M1,21, . . . 1− αsM1,s1
´
>0,

which shows, by using Theorem 2.5.3 (parts 2.5.3.2 and

2.5.3.12) in [17], that ρ(M1) < 1. This concludes the proof

of the fact that M provides an asymptotically convergent

guidance policy. The following theorem, which is our main

result, follows from the above discussion.

Theorem 5: Consider the M-H algorithm, for some v ≥ 0,

given by (29) where the proposal matrix satisfies i(K) =
AT

a for some strongly connected symmetric adjacency matrix

Aa = AT
a , and matrix F is constructed using equation (25)

between the bins for the recurrent states. Then the resulting

matrix satisfies M ∈ M(v, Aa), and ρ(M − v1T ) < 1.

VI. NUMERICAL EXAMPLE

This example demonstrates decentralized swarm guidance

using PGA. The swarm contains N = 5000 autonomous

agents that are guided to form the sequence of probability

distributions (vA, vE), where vA is a distribution associated

with the letter “A” and vE is associated with the letter “E”.

Convergence is monitored using the total variation,

T (t) =
N∑

j=1

∣∣∣x(t)[j] − vd[j]
∣∣∣ (31)

The scenario starts at t = 0 with the swarm uniformly

distributed across R (cf., Fig. 2). PGA turns on and be-

gins with each agent flying an independent realization of

a Markov chain having stationary distribution vA. Here,

PGA is implemented using the M-H algorithm. The total

variation in Fig. 1 indicates convergence is achieved at

roughly t = 250 steps, with the resulting distribution for the

letter A shown in Fig. 2. During this period (cf., t = 40),

an onlooker would witness “emergent swarm behavior” in

the sense of seeing the letter A emerge from the starting

uniform distribution of agents. At time t = 251, PGA begins

each agent flying a new Markov chain having stationary

distribution vE . Fig. 1 indicates convergence is achieved at

time t = 500, with the resulting distribution for the letter

E shown in Fig. 2. During this period, an onlooker would

witness the swarm morphing from the letter A into the letter

E. At time t = 501, damage is inflicted on the swarm,

wiping out most agents in the middle arm of the letter E.

As time progresses, the agents repair this damage without

collaborating or even knowing about the existence of the

damage. Damage is repaired and the swarm is re-converged

back to the letter E by time t = 950.

VII. CONCLUSIONS

A new probabilistic method is introduced for performing

swarm guidance that guides the shape of the swarm to

conform to a prescribed probability distribution. The proba-

bilistic guidance approach is completely decentralized in the
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Fig. 1. Convergence for a 5000-agent swarm as a function of time in terms
of the total variation T (t).

t = 0 =⇒ t = 40 =⇒ t = 250 =⇒

t = 500 =⇒ t = 501 =⇒ t = 950

Fig. 2. Histogram of agents at different time instances: Guided by PGA, a
swarm of 5, 000 agents evolves through a sequence of desired distributions,
and autonomously recovers from inflicted damage.

sense that there is no communication between agents, yet
the swarm asymptotocally achieves its desired distribution. In
addition, the swarm has a novel self-repair property that fixes
damaged portions of its distribution, and handles transient
states to allow strict enforcement of desired keep-out (i.e.,
zero-probability) regions. A simulation of the guided swarm
demonstrates the properties of convergence and self-repair.
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