
Lossless Convexification of Control Constraints 
for a Class of Nonlinear Optimal Control Problems 
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Abstract— In this paper we consider a class of optimal control 
problems that have continuous-time nonlinear dynamics and 
nonconvex control constraints. We propose a convex relaxation 
of the nonconvex control constraints, and prove that the optimal 
solution to the relaxed problem is the globally optimal solution 
to the  original problem  with nonconvex control constraints. 
This lossless convexification enables a computationally simpler 
problem to be solved instead of the original problem. We 
demonstrate the approach in simulation with a planetary soft 
landing problem involving a nonlinear gravity field. 

 
I. INTRODUCTION 

 
In this paper we consider a class of finite time horizon op- 

timal control problems that have continuous-time nonlinear 
dynamics and nonconvex control constraints. A large number 
of practical problems fall into this category. One example is 
the planetary landing problem[13], [12], also known as the 
soft landing problem in the optimal control literature[9]. In 
planetary landing, an autonomous spacecraft lands on the 
surface of a planet by using thrusters, which can produce 
a finite magnitude force vector with an upper and nonzero 
lower bound on the magnitude. In this case, the resulting set 
of feasible controls is nonconvex. Another example is that of 
path planning for an unmanned aerial vehicle (UAV) subject 
to upper and lower bounds on the norm of the commanded 
velocity[15]. As with the soft landing problem, the minimum 
norm constraint makes the set of feasible controls nonconvex. 

Prior work proposed the idea of relaxing the nonconvex 
control constraints to a convex set in such a way that the 
optimal solution to the relaxed problem is guaranteed to be 
the optimal solution to the original problem[2]. We refer 
to this as a lossless convexification, since no part of the 
feasible space of the original problem is removed in  the 
process of rendering the constraints convex. In [2], [5] the 
authors perform a lossless convexification for the special 
case of a planetary landing problem in a constant gravity 
field, where the changing mass of the spacecraft renders the 
system dynamics nonlinear. In [1] this result is generalized to 
optimal control problems with linear system dynamics and a 
class of non-convex control constraints. In the present paper 
we establish an extension of this result to a class of optimal 
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control problems with nonlinear system dynamics and non- 
convex control constraints. This class includes the planetary 
landing problem with nonlinear, nonconstant gravity fields 
and aerodynamic forces. The extension to nonconstant grav- 
ity fields is significant, since it extends the applicability of 
convexification from landing on large planets, where gravity 
may be assumed constant, to small bodies such as moons, 
comets and asteroids. General nonlinear dynamics prevent 
the finite-parameter optimization problem that results from 
the convexification from being convex; however by approxi- 
mating the nonlinear dynamics as being piecewise linear, the 
globally optimal solution can be found in finite time using 
Mixed Integer Linear Programming (MILP)[10]. This is in 
contrast to shooting or pseudospectral methods[8], [18], [16], 
which can only guarantee local optimality. By removing the 
nonconvex control constraints, the convexification introduced 
in this paper significantly reduces the number of disjunctions 
in the MILP encoding, and hence the problem complexity. 

The organization of the paper is as follows. In Section II 
we provide the main theoretical result, in Section III we 
show how the result applies to two practical examples, and 
in Section IV we provide simulation results. 

 
 
 

II. LOSSLESS CONVEXIFICATION 
 
 

In this section we provide our main analytic result, namely 
lossless convexification for a class of nonlinear optimal 
control problems with nonconvex control constraints. We 
provide a convex relaxation of the nonconvex control con- 
straints, along with guarantees that the optimal solution to the 
problem with the convex control constraints is the optimal 
solution to the problem with nonconvex control constraints. 

In this paper we consider the nonlinear dynamic system: 

ẋ = f t, x, u, gc(u) , (1) 

where x ∈ ℜnx , the function f is continuously differentiable, 
and gc : ℜnu → ℜ1 is a measure of the control effort. We 
use u ∈ ℜnu  to denote the control inputs. We use ||v|| to 
denote the 2-norm of vector v. We use v = 0 to mean that 
all elements of  v are zero, and use v /= 0 to  mean  
that 
at least one element of v is nonzero. A vector of all zeros 
except unity in the i’th element is denoted ei. We use a.e. 
to mean ‘almost everywhere’, i.e. everywhere except on a 
set of measure zero. We define the Jacobian of an arbitrary 
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function h(v) : ℜnv  → ℜnh   as follows: u  satisfying  (7)  through  (10),  meaning  that  for  every 
∗  

∂h1 
v1 

(∇v h) � 


 

 
 

. . . 

∂hnh 
 

v1   

subinterval  [t1, t2]  ⊆ [0, tf ] the  initial  state  λ(t1) of  the 
following  system  can  be  determined  uniquely  from  the 
output y(t) for t ∈ [t1, t2]:  

∂h1 
vnv 

∂hnh  
 

vnv 

λ̇ = −(∇x 
 

f )λ 

where hi denotes the i’th element of h and vi denotes the 
i’th element of v. 

In this paper we are concerned with the optimal control 
problem: 

Problem 1 (With non-convex control constraints): 

y = (∇uf )λ. (13) 
The following theorem provides the lossless convexification 
that is the main result of this paper. 

Theorem 1: Let {u∗, x∗, t∗ , Γ∗} be the optimal solution 
to Problem 2. If Condition 1 is satisfied, the function ∗ ∗   ∗ 

 
min J = 

 
 
tf 

l t, gc(u(t)) dt subject to: (2) 
l(t, Γ)  /=  0 ∀Γ  ∈  [ρ1, ρ2],  ∀t,  then {u , x , tf } is  the 
optimal solution to Problem 1. 

u,tf 0 
 

ẋ (t) = f (t, x(t), u(t), gc (u(t))) a.e. on [0, tf ] (3) 
0 < ρ1 ≤ gc(u(t)) ≤ ρ2 a.e. on [0, tf ] (4) 

Proof:  The Hamiltonian for Problem 2 is: 
 

H = λ0l(t, Γ) + λT f (t, x, u, Γ), (14) 
 

and the costate dynamics are given by: 
x(0) = x0, x(tf ) ∈ F . (5) 

We propose the following convex relaxation of the control 
 
λ̇
  

0
 

∂H 
 

0
 = − = 

 
, (15) 

constraints in Problem 1, which is inspired by the convexi- λ̇ ∂x −(∇xf )λ 
fication introduced in [2], [5], [1]: 

Problem 2 (With relaxed control constraints): 
tf 

where λ0  is constant and λ is absolutely continuous with 
[λ0, λT ] /= 0 ∀t from [3]. Define y = (∇uf )λ. We now show 
that y(t) = 0 for a finite interval is not possible. The proof 

min J = 
 
 l t, Γ(t) dt subject to: (6)  is by contradiction. Assume that there exists t < t  such 

u,tf ,Γ 0 
1 2 

 

ẋ (t) = f (t, x(t), u(t), Γ(t)) a.e. on [0, tf ] (7) 
0 < ρ1 ≤ Γ(t) ≤ ρ2 a.e. on [0, tf ] (8) 
gc(u(t)) ≤ Γ(t) a.e. on [0, tf ] (9) 
x(0) = x0, x(tf ) ∈ F , (10) 

where Γ(t) ∈ ℜ1 is a slack variable. 
The following lemma establishes conditions under which the 
optimal value of u is on the boundary of the feasible set. 

Lemma 1: Let: 

that y(t) = 0 ∀t ∈ [t1, t2]. From Condition 1 the system 
(13) is totally observable on the interval [0, t∗ ], meaning that 
for every subinterval [t1, t2] ⊆ [0, t∗ ] the initial state λ(t1) 
can be determined uniquely from the output y(t) for t ∈ 
[t1, t2]. This means that λ(t1) = 0, and from the costate 
dynamics λ(t) = 0 ∀t ∈ [t1, t∗ ]. Since tf is unconstrained, 
the transversality condition[3] means that H(t∗ ) = 0, and 
since l(t, Γ) /= 0  ∀t, ∀Γ ∈ [ρ1, ρ2] this means that λ0 = 
0, hence [λ0, λT ] = 0  ∀t ∈ [t1, t∗ ], which contradicts  
the requirement that [λ0, λT ]T /= 0 ∀t ∈ [0, t∗ ]. Hence 
y(t)  /= 

 
 

Let: 

H = λ0l(t, Γ) + λT f (t, x, u, Γ). 0 a.e on t ∈ [0, t∗ ]. 
The pointwise maximum principle implies that, in the 

optimal solution, the Hamiltonian is maximized over {u, Γ} 

{u†, Γ†} � arg max H 
u,Γ 

subject to  gc(u) ≤ Γ, 0 < ρ1 ≤ Γ ≤ ρ2. 

Then if f (t, x, u, Γ) is differentiable in u and (∇uf )λ /= 
0 

at u†: 

gc(u†) = Γ†. 
 

 
 

Proof: The pair {u†, Γ†} must satisfy: 

u† = arg max λT f (t, x, u, Γ†)  subject to: (11) 
u 

gc(u) ≤ Γ†. (12) 
 

If at u†, ∂H/∂u = (∇uf )λ /= 0 then gradient of the  
cost function (11) is nonzero at u†. Hence the optimal 

solution to 
(11) is on the boundary of the feasible set, and gc(u†) = Γ†. 

 
Condition 1: The pair [−(∇xf ), (∇u f )] is totally 

observable[7]  on  [0, tf ]  for  all  sequences  of  x  and 

almost everywhere on t ∈ [0, t∗ ]. For any value of Γ, since 
(∇uf )λ  /=  0 a.e. on t  ∈  [0, t∗ ], Lemma 1 means  
that 
gc(u∗) = Γ a.e. on t ∈ [0, t∗ ]. Hence the cost functions (2) 
and (6) for the nonconvex problem and the relaxed problem 
are identical, and the nonconvex control constraint (4) is 
satisfied by u∗. Furthemore the relaxed solution satisfies the 
original dynamics (3). This implies that the optimal cost of 
Problem 2 is greater than or equal to the optimal cost of 
Problem 1. Since Problem 2 is a relaxation of Problem 1, 
the optimal cost of Problem 2 is less than or equal to the 
optimal cost of Problem 1. Hence the costs are equal, which 
completes the proof. 
Theorem 1 shows that we can solve a relaxation (Problem 2) 
of the nonconvex optimal control problem (Problem 1) with 
a guarantee that the optimal solution to the relaxation will 
be the globally optimal solution to  the original problem. 
We have hence established a lossless convexification of 
Problem 1. 

Condition 1 can be established using the following result 
from [7]: 
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Lemma 2: The system (13) is totally observable on the 
interval [0, tf ] if and only if the following observability 
matrix has rank nx almost everywhere on [0, tf ]: 

Q(t) � [(∇uf )T , ∆0(∇u f )T , . . . , ∆n−1(∇u f )T ]T , (16) 

Condition 2: There exists a constant invertible matrix T ∈ 
ℜ(nx ×nx ) such that: 

 

T −1(∇xf )T =  E t, x, u, gc(u)
 

0 , (22) 
0 where E(·) ∈ ℜnx ×na   and n < nx. 

where: Theorem 2: Assume that Condition 2 holds and that F 
d is defined as a plane such that F � {x : x = Lv + ax}, ∆0 ≡ (∇xf )T + , (17) where L ∈ ℜn  ×n ∗ ∗   ∗ ∗ 

dt v . Let {u , x , tf , Γ } be the solution to 

and (∇xf ) and (∇uf ) are nx − 2 and nx − 1 times 
differentiable, respectively. 
The rank of the matrix Q(t) may be difficult to verify, in 
general, because of the need to compute the time-derivatives 
in (17). For a large class of problems related to vehicle path 
planning, we can show that Condition 1 is satisfied without 
the need for explicit computation of the derivatives. In such 
problems the state can be partitioned into two parts; the first 
is acted upon directly by the control effort, the second is 
not. An example is where the control effort acts to change 
the vehicle velocity, and the vehicle’s position is simply the 

Problem 2. Assume l(t, Γ) /= 0  ∀Γ ∈ [ρ1, ρ2], ∀t. Define: 
 

M̃ (t) �  M (t)  T −1, (23) 
LT 

 

where M (t) is as defined in (20). Then if M̃ (t) can be 
written: 

 
M̃ (t) =  A B

 
B = 0, Null(A) = 0, Null(D) = 0, 

C D 
(24) 

 

where A ∈ ℜna ×na , then {u∗, x∗, t∗ } is the optimal solution 
integral of velocity. The following corollary shows that for 
such systems, the convexification holds: 

Corollary 1: Let {u∗, x∗, t∗ , Γ∗} be the solution to Prob- 
lem 2 where f (·) has the form: 

 

x =  x1
 

f (t, x, u) =  f1(t, x, u)  . (18) 

to Problem 1. 
Proof: As in Theorem 1 we show that y(t) = 0 for a 

finite interval is not possible. Assume that there exists t1 < t2 
such that y(t) = 0 ∀t ∈ [t1, t2]. This implies that ẏ (t) = 
0 ∀t ∈ [t1, t2]. Define α = T λ = (α1, α2) where α1 ∈ ℜna 

and α2 ∈ ℜnx −na . Then M (t)T −1α(t) = 0 ∀t ∈ [t1, t2]. 
x2 f2(t, x) From the form of M̃ this means Aα1(t) = 0 ∀t ∈ [t1, t2] 

If Null(∇uf1) = 0, Null(∇x1 f2) = 0, the function l(t, Γ) 
/= 
0 ∀Γ ∈ [ρ1, ρ2], ∀t, then {u∗, x∗, t∗ } is the optimal solution 

hence α1(t) = 0 ∀t ∈ [t1, t2]. From the costate dynamics: 
 

α̇ (t) = −T −1(∇xf )T α(t), (25) 

to Problem 1. 
Proof:  For this system: 

 
and since f (·) satisfies Condition 2, we know that α̇ (t) = 

∗ ∗ ∗ 

(∇uf ) =  (∇uf1) 0
 
 0 ∀t  ∈ [t1, tf ], hence α(t) = α(tf ) ∀t ∈ [t1, tf ]. The 

transversality condition[3] implies that LT T −1α(t∗ ) = 0,  
(∇x1 f1) (∇x1 f2)

 
 T   −1 ∗ 

(∇xf ) = (∇x 2 f1) (∇x2 f2) (19) hence L T [t1, t∗ α(t) = 0 ∀t ∈ [t1, tf ]. Since α1(t) = 0 ∀t ∈ ∗ 

 
Define: f ], then Dα2(t) = 0 ∀t  ∈  [t1, tf ], which implies 

α2(t) = 0 ∀t ∈ [t1, t∗ ]. Hence λ(t) = 0 ∀t ∈ [t1, t∗ ], which 
f f 

 
 
 

then: 

M (t) � [(∇uf )T , ∆0(∇u f )T ]T , (20) 
is a contradiction, and the proof proceeds as in Theorem 1. 

 
Theorem 2 applies to vehicle-type problems where the 

dynamics of the states that are additional to velocity and 
M (t) = 

  
(∇u f1)  0 d(∇u f1 ) position depend only on the control effort, and time, as we 

dt − (∇uf1)(∇x1 f1) − (∇uf1)(∇x1 f2) 
(21) 

 
We now show that M (t) has rank nx. It suffices to show 
that M (t)λ = 0 implies λ = 0. Let λ = (λ1, λ2), then 
Null(∇uf1) = 0 implies λ1 = 0, hence (∇u f1)(∇x1 f2)λ2 = 

show in Corollary 2. An important practical example is the 
case where the vehicle has variable mass, and the rate of mass 
depletion depends only on the norm of the applied control 
effort, as we show in Section III. 

Corollary 2: Let f (·) have the form: 
1. Since Null(∇x1 f2) = 0, this implies λ2 = 0 and hence 
λ = 0, and Null(M (t))=0. Hence, for the system (18), Q(t) 
is rank nx  and the conditions of Theorem 1 are satisfied, 

x =  x3
 
 

x4 

 
f (t, x, u) = 

  
f3(t, x, u) 

  
, f4(t, gc(u)) 

 
(26) 

from which the proof follows. where x3 ∈ ℜx3 , x4 ∈ ℜx4 , and let L be defined such that 
1  L2 ] where L ∈ ℜnx4 ×nx4 . Define: One limitation of Corollary 1 is that it requires 2nu ≥ nx. 

For many vehicle path planning problems, 2nu = nx since LT = [LT T 2   
(∇uf ) 

the state consists of the vehicle position and velocity, and � 3
 

(∇u 3 ) 
. (27) 

the control acts on all elements of the vehicle velocity. We 
can extend Corollary 1 to the case of 2nu < nx for systems 
where there is additional structure in f (·) and F . 

dt − (∇uf3)(∇x f3) 
If Null(M3) = 0, Null(L2) = 0, and l(t, Γ) /= 0   ∀Γ ∈ 
[ρ1, ρ2], ∀t then the conclusions of Theorem 2 hold. 



2 

Proof: Choose T = I , then from the structure of f (·) 
we have: 

 
M̃ =  M3 0   , (28) 

we can express this problem as Problem 1 with: 
 

l(t, v) = v, gc(u) =  u , x0 = (ṙ 0, r0, m) (32) 
F = {x : r = tp, ṙ = tv } (33) 

LT T 
1 L2 

 
 

f (t, x, u) = 
f5(t, x, u) 
f6(t, x) 

 
g(r) − CD   ṙ   ṙ + τ /m


 

= ṙ . 
where Null(M3)  =  0 and Null(LT )  =  0. Hence the 
conditions of Theorem 2 are satisfied. 

   
f7(t, gc(u(t)) −β||τ || 

 
 

(34) 
All of the convexification results presented in this paper 

rely on having an integral cost in Problem 1. The results, 
however, can be extended to the case of terminal cost using 
the two-step prioritized optimization strategy proposed in [5], 
[1]. First we solve a problem with relaxed control constraints 
and terminal cost, to determine the optimal terminal state. 
Then we solve a problem with a suitably-chosen integral 
cost with the terminal state constrained to be the optimal 
terminal state. From the convexification results presented in 
this paper, the second step ensures that the nonconvex control 
constraints are satisfied. 

 
 

III. PRACTICAL EXAMPLES 
 

In this section we use Theorem 1 to generate lossless con- 
vexifications for two practical examples, namely minimum- 
fuel soft landing with a general nonlinear gravity field and 
nonlinear aerodynamic drag, and path planning for a UAV 
with minimum and maximum velocity constraints. Both are 
problems of significant practical interest [12], [17], [2], [5], 
[15]. 

 
 

A. Minimum-fuel Landing with Nonlinear Gravity 
 

The problem of minimum-fuel soft landing is stated as: 
Problem 3 (Nonlinear-gravity soft landing): 

 tf 

The function f (·) falls into the form of Corollary 2, with 
f4 = f7 and f3 = (f5, f6). We have: 

(∇uf5) = I (∇ṙ  f6) = I, (35) 

hence from Corollary 1 we know Null(M3) = 0. Now, 
l(t, Γ) /= 0  ∀Γ ∈ [ρ1, ρ2],  ∀t. Since the final state is  
all 
constrained except for m(tf ), we can write F = {x|x = 
Lv + ax} with v ∈ ℜ and L1 = 06×1  and L2 = 1. Hence 
the conditions of Corollary 2 are satisfied and we can obtain 
the optimal solution of this problem by solving its relaxed 
version given by Problem 2. 

The special case of constant gravity and no aerodynamic 
drag, where g(r(t)) � g and CD = 0, was handled by 
[2], which is now generalized to the nonlinear gravity case 
with aerodynamic drag by Theorem 2. In Section IV we give 
simulation results for the general nonlinear gravity case. For 
extensive results on the special case of constant gravity, we 
refer the reader to [2]. 

 

B. Velocity-controlled Aircraft 
In this section we consider the problem of controlling 

an aircraft subject to maximum and minimum velocity con- 
straints, and subject to aerodynamic drag proportional to the 
square of velocity. The aircraft is modeled as having an inner- 
loop proportional controller that regulates the velocity to a 
desired reference value[15]. 

Problem 4 (UAV with velocity constraints): 
tf 

 
min J = 

 
 ||τ (t)||dt subject to: (29) min J = 

 
 vd ,tf 

l ||vd(t)|| dt subject to: (36) 
τ,tf 0  

 
τ (t) 

0 
 

r̈(t) = κ vd(t) − ṙ  (t)  − CD ṙ (t) ṙ  (t)  
r̈(t) = g(r(t)) − CD (r(t)) ṙ  (t) ṙ  (t) + m(t) (30) 

 

0 < ρ1 ≤ ||vd (t)|| ≤ ρ2 

ṁ (t) = −β τ (t)  
0 < ρ1 ≤ ||τ (t)|| ≤ ρ2 (31) 

r(0) = r0 

r(tf ) = rf 

ṙ (0) = ṙ 0 

ṙ (tf ) = ṙ f , 
r(0) = r0, 
r(tf ) = tp, 

ṙ (0) = ṙ 0, 
ṙ  (tf ) = tv , 

where r denotes position, vd denotes reference velocity, κ 
denotes the gain of the inner-loop controller, rf denotes 

where r ∈ ℜnr   denotes position, τ  ∈ ℜnr   denotes thrust1, desired final position and ṙ  f denotes desired final velocity. 
The function l(·) is a cost function that may be nonlinear 

m ∈ ℜ denotes mass, and tp ∈ ℜnr and tv ∈ ℜnr denote the position and velocity targets, respectively. CD  is a constant and  nonconvex, as  long  as  l(v)  /=  0 for  
ρ1 

≤ v ≤ ρ2. 

 

related to the drag coefficient of the spacecraft and the 
atmospheric density, β relates to the specific impulse of the 
thrusters, and g(·) is the (possibly nonlinear) acceleration 

This problem can be written as Problem 1 with x = (ṙ , r), 
u = vd, and: 

f (t, x, u) =  f1(t, x, u)  =  −κṙ  − CD ṙ ṙ   + κvd
 
 

due to gravity. Therefore, letting x � (ṙ , r, m) and u � τ , 
 
 

1Note that thrust here is not a true force, but an effective force, which 
is proportional to the rate at which mass is expelled by the thrusters. We 
refer the reader to standard texts on the rocket equation, such as [6]. 

f2(t, x) ṙ 
gc(u) =  vd x0 = (r0, ṙ 0), 
F = {x : x1 = ṙ f , x2 = rf }. 
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V. DISCUSSION 

In this section we make some remarks on two alternative 
approaches to handling the nonconvex control constraints in 
Problem 1. The first approach is to approximate the noncon- 
vex constraint ρ1 ≤ gc(u(t)) as a polytopic stay-out region, 
and use binary variables to encode the resulting problem 
as a MILP. This was proposed by [14] for a UAV path- 
planning problem. Although our convexification approach 
also results in a MILP, the number of binary variables is 
significantly reduced by removing the nonconvexity in the 
control constraints. Since a MILP is worst-case exponential 
in the number of binary variables, this yields a large im- 
provement in the problem complexity. 

The second approach is to perform a change of variables 
downrange(m) 4 

x 10 to render the control constraints convex. For lower and upper 
 

Fig. 4.   Optimal trajectory for nonlinear soft landing problem. 
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−500 
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20 downrange 

bounds on the 2-norm, as in our practical examples, this can 
be achieved by a conversion to polar coordinates. The major 
disadvantage of  this approach, however, is that it simply 
shifts the nonconvexity from the control constraints to the 
dynamics. In  the case of polar coordinates, this  leads to 
trigonometric functions in the dynamics. For many problems, 
in cartesian coordinates, the system dynamics are linear with 
some structured nonlinearity, which can be approximated as 
being piecewise linear without an explosion in the number 
of binary variables  in  the  resulting  MILP.  A  conversion 
to polar coordinates requires every nx-dimensional equality 
constraint in the dynamics to be modeled as being piecewise 
linear. This will typically lead to many more binary variables 
than the convexification approach proposed in this paper. 

 

VI. CONCLUSION 

This paper provided a lossless convexification of a class of 
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that  the  optimal  solution  to  the  relaxed  problem  is  the 
globally optimal solution to the original nonconvex problem. 
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Fig. 5. Optimal profiles for nonlinear soft landing problem. Note the 
nonconstant, nonlinear acceleration due to gravity. The nonconvex control 
acceleration constraints are satisfied, as predicted by Theorem 1. 

We demonstrated the approach in simulation with a planetary 
soft landing problem. 

 

APPENDIX 

In this section we describe a method for approximating the 
relaxation of the infinite-dimensional soft landing problem 
(Problem 3) as a finite-dimensional optimization problem 
that can be solved to global optimality using Mixed Integer 
Linear Programming (MILP). We introduce the following 
approximations: 

1) In order to reduce the infinite-dimensional to a finite- 
dimensional one, we perform a standard discretization 
in time assuming a zero-order  hold (ZOH) on the 
control inputs u. 

2) We approximate the smooth nonlinear function g(r(t)) 
as a piecewise linear function, as in (37) through (38). 

3) We approximate the norm bounds using convex poly- 
topic constraints as in (39). 

We then show that, for fixed ∆t, the resulting problem is a 
MILP. This means that, by performing a line search over ∆t, 
as proposed in [2], we can find the globally optimal solution. 



a
 

For simplicity of exposition, we assume that mass is 
constant, even though this nonlinearity could be handled 
through piecewise linearization in a similar manner to the 
gravity. An alternative method for dealing with time-varying 
mass, which moves the nonlinearity from the dynamics into 
the constraints, was previously proposed by [2]. 

 

A. Time discretization 
To perform the time-discretization we define a fixed num- 

ber of time steps N , and a time step ∆t such that tf = N ∆t. 
Define a discrete-time set of variables that approximate the 

and subject to rN = rf , ṙ N = ṙ f . 
In Problem 5, the binary variables zik are used to indicate 

which polytope Pi  the position rk  lies in. The constraint 
(48) ensures that at least one of the zik is zero at each time 
step. For whichever Pi has zik = 0, the constraints (45) and 
(46) use ‘big-M’ formulation[15] to ensure that the dynamic 
equality constraints are satisfied, while (44) ensures that rk 

lies in Pi. For fixed ∆t, since all of the constraints are linear, 
the cost function is linear, and we have integer variables, 
Problem 5 is a Mixed Integer Linear Program. This means 
it can be solved to global optimality using highly optimized 

continuous time variables: rk � r(k∆t), ṙ k � ṙ  (k∆t). We commercial solvers[11]. Since ∆t is a scalar, we can find the 
restrict the class of control input sequences τ (t) and Γ(t) to 
be of a zero-order hold type, such that: 

τ (t) = τk   ∀t ∈ [k∆t, (k + 1)∆t) 
Γ(t) = Γk   ∀t ∈ [k∆t, (k + 1)∆t). (40) 

 

By approximating the gravity value g(r(t)) as constant for 
all t ∈ [k∆t, (k + 1)∆t], the dynamics of the spacecraft (30) 
can be written in discrete-time as: 

global optimum to Problem 5 by performing a line search 
on ∆t, solving a MILP at each iteration. We use the Golden 
Search method[4] to do so. 

In summary, the relaxed soft landing problem with non- 
linear gravity can be approximated using the approach de- 
scribed in this section, and solved to global optimality using 
existing techniques. 
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