
V

VML 3.0 Reactive Sequencing Objects and Matrix Math
Operations for Attitude Profiling

Dr. Christopher A. Grasso1

Blue Sun Enterprises, Boulder, Colorado, 80302

and

Joseph E. Riedel2

Jet Propulsion Laboratory / California Institute of Technology, Pasadena, California, 91109

VML (Virtual Machine Language) has been used as the sequencing flight software on
over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In
conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer",
VML version 3.0 has been enhanced to include object-oriented element organization, built-in
queuing operations, and sophisticated matrix / vector operations. These improvements allow
VML scripts to easily perform much of the work that formerly would have required a great
deal of expensive flight software development to realize. Autonomous turning and tracking
makes considerable use of new VML features. Profiles generated by flight software are
managed using object-oriented VML data constructs executed in discrete time by the VML
flight software. VML vector and matrix operations provide the ability to calculate and
supply quaternions to the attitude controller flight software which produces torque requests.
Using VML-based attitude planning components eliminates flight software development
effort, and reduces corresponding costs. In addition, the direct management of the
quaternions allows turning and tracking to be tied in with sophisticated high-level VML
state machines. These state machines provide autonomous management of spacecraft
operations during critical tasks like a hypothetic Mars sample return rendezvous and
docking. State machines created for autonomous science observations can also use this sort
of attitude planning system, allowing heightened autonomy levels to reduce operations costs.
VML state machines cannot be considered merely sequences - they are reactive logic
constructs capable of autonomous decision making within a well-defined domain. The state
machine approach enabled by VML 3.0 is progressing toward flight capability with a wide
array of applicable mission activities.

I. Introduction
ML (Virtual Machine Language) has been used as the sequencing flight software on thirteen deep-space
missions, most recently flying on GRAIL and JUNO, and slated for flight on OSIRIS-Rx. In conjunction with

the NASA SBIR entitled Reactive Rendezvous and Docking Sequencer, VML version 3.0 has been enhanced to
include object-oriented element organization, built-in queuing operations, and sophisticated matrix and vector
operations. These improvements allow VML scripts to perform much of the work that formerly would have required
a great deal of expensive flight software development to realize. Attitude profiling in VML is an example of a
malleable guidance, navigation, and control (GNC) flight capability which can enhance safety by rejecting illegal
attitude changes and lower implementation effort relative compared to equivalent flight software implementations.

Autonomous slewing and tracking makes considerable use of new VML features. Profiles generated by flight

software are managed using object-oriented VML data constructs executed in discrete time by the VML flight
software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude
controller flight software which produces torque requests. Targeting the new spacecraft attitude involves

1 Principal VML Engineer, Blue Sun Enterprises, 1942 Broadway Suite 314, Boulder, CO, 80302, Senior Member.
2 Principal Engineer, Optical Navigation, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109.

1
American Institute of Aeronautics and Astronautics

determining the desired orientation by using vector operations on the spacecraft features to present to primary and
secondary targets. Turning uses constraint-based slews which utilize trigonometric operations. Keep-out zones to
prevent orienting sensitive elements of the spacecraft toward the sun are considered, and a beltway of known safe
paths are utilized in order to guide the spacecraft from its current orientation to the orientation desired.

Using VML-based attitude planning components eliminates flight software development effort, and reduces

corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in
with sophisticated high-level VML state machines. These state machines provide autonomous management of
spacecraft operations during critical tasks like a Mars hypothetical sample return rendezvous and docking, including
trajectory management and target acquisition. State machines created for autonomous science observations can also
use this sort of attitude planning system, allowing heightened spacecraft autonomy to reduce operations costs.

VML state machines cannot be considered merely time-ordered sequences - they are reactive logic constructs

capable of autonomous decision making within a well-defined domain. The state machine approach enabled by
VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.

This paper outlines the basics of the attitude profiling problem in order to orient a spacecraft for power

production, communications requirements, observations, and maneuvering. VML 3.0 flight capabilities are
summarized that have evolved from flight missions like Mars Phoenix, and technical research like the Reactive
Rendezvous and Docking Sequencer which is currently funded as a phase II NASA Small Business Innovative
Research (SBIR) grant. A high-level outline of the profiling process is given, and examples of VML features used
during the calculations is provided. Advantages of using the VML 3 scripting language over traditional flight
software development are discussed, and implementation status of the VML attitude profiler is given.

II. Attitude profiling

A. Challenges
For a typical mission that has substantial target-relative Guidance, Navigation, and Control (GN&C) activities,

the attitude resource of a spacecraft has many demanding customers. These include a power system which generally
requires a power-positive solar-array attitude, propulsion events, navigation imaging, and science remote-sensing. If
the mission includes a rendezvous, then the complex pointing associated with approach, rendezvous and docking
will be required. Landing on a celestial body requires extended propulsion phases for large bodies, or discrete events
for small ones, followed by attitude changes to achieve the landing position which will match the local surface
normal – which on a small body is a rotating vector. Remote sensing, and especially mapping, may require complex
sweeping attitudes to optimally develop visual and topographic maps of the surface, which often requires multiple
passes to obtain different view geometries and varying time-of-day illumination angles. Flyby missions, such as of
small bodies, require rapid turn-around of onboard-determined navigation solutions to maintain attitude lock on the
target. Because of the singular nature of flyby geometries, such missions also frequently feature specialized
additional constraints such as shield orientation (for a comet flyby) or a specific orientation for a large SEP array, to
allow rapid slewing of the spacecraft body (around the panel axis) at close-approach. Navigation may require
complex surveys of the celestial sphere for cruise navigation imaging, or targeting of specific longitude/latitude
locations on a body surface for landmark acquisition. Science investigations may need to rapidly scan a gaseous
limb of a planet or satellite with the high gain antenna to obtain radio-occultation observations from the Earth.
Onboard science analysis software may be searching for changes on the surface of the target body, and request
remote-sensing observations of opportunity. All of these examples have been planned and/or implemented on NASA
deep space planetary missions over the last three decades.

To compound the many varied attitude demands of these missions – and often many of these are featured in a

single mission – spacecraft attitude requirements must be achieved in the face of severe constraints. It has already
been noted that a solar-powered spacecraft must generally remain power positive, which in the case of a thrusting
SEP mission is a very stringent constraint. Spacecraft almost always carry instruments that cannot be pointed at the
Sun, and many sensitive instruments cannot even look at a bright target such as the Earth or Moon (when
illuminated) without a substantial subsequent cool-down period before again being usable. SEP engines have been
known to be sensitive to direct Sun illumination as well, and often batteries or other electrical equipment has been
found to be susceptible to excess illumination and associated heat. On the other hand, in-flight exigencies have

2
American Institute of Aeronautics and Astronautics

required forced sun-heating of otherwise low-temperature-craving instruments to relieve contamination
condensation. Other engineering elements have been given sun-therapy as well, often temporarily over-riding
otherwise stringent pointing constraints. High gain antennas have been precluded from Sun point on occasion, due to
their focusing actions of radio waves as well as light, leading to concerns about melting of secondary mirrors and
wave-guide apertures. Star trackers, though generally immune to damage by sun exposure, will almost always lose
lock when exposed, and temporarily disable a critical part of the attitude control system, which in some instances
might lead to a safe-hold condition. Sweeping a large body through the star-tracker field could cause the same
problem.

Most of the above needs and constraints (excepting those involving onboard autonomy) could be satisfied by

laborious hand construction of sequences on the ground for uplink and subsequent execution. However, this method,
certainly the norm for missions of the past, is highly labor intensive, expensive and mission limiting. Missions
utilizing highly autonomous GN&C, such as Stardust, Deep Impact and especially Deep Space 1 have shown the
advantage of partial or complete automation of many of these processes and constraints. It is certain that future
missions will feature increasing automation and the need to cope with increasingly complex spacecraft pointing
needs. Thus the challenge becomes to perform at any time virtually any pointing needed by the spacecraft itself, its
autonomy systems, the Engineering Team, and the Science Team. In additional to having this versatility, the system
must be safe, must prevent user errors and detect self-faults, and must be easy for the ground and onboard autonomy
systems to use: few things are more complex to specify than the immediate and on-going attitude of a spacecraft.
Finally, the pointing system needs to be transparent in use, function, and operation, in order for the many
stakeholders of spacecraft pointing to be assured that the desired, requested, or anticipated actions will in fact occur,
and will occur safely.

B. Enabling factors for a modern approach

With the flight of Deep Impact [13], deep space missions finally entered the “modern” world of reasonably
capable onboard computer processing, with the first flight of a RAD-750 processor. Though plagued with “beta-
version” problems with the board, the throughput of the RAD-750 was sufficient to allow autonomous onboard
navigation (AutoNav) to impact the nucleus of comet Tempel-1, and image the impact zone with the flyby
spacecraft. But the RAD-750 is now over a decade old: more computing power is in the offing, and will most
certainly be applied to the next generation of planetary spacecraft. This fact will eliminate the heretofore absolute
constraint of spacecraft flight software systems, that anything computational must be done in the most efficient way
possible. Elimination of this constraint will allow for relatively low-rate computations – even if somewhat complex
– to be performed in a much more malleable language, such as VML, even if it is an interpreted language. But there
are other enablers for a modern approach to attitude profiling.

Since DS1, a number of missions have taken advantage of the AutoNav generalized solar system body and

spacecraft ephemeris specification system called “Ephemeris Services” (ES) [9]. ES represents the positions of a
body or spacecraft in time as a set of Chebychev polynomials. The ephemeris is broken up into a series of
polynomials in time with one string of polynomials for inertial x, y, and z. The polynomials can be in any frame and
centered on any body, but traditionally, Earth Mean Equator 2000 centered on the Sun during cruise and on the
target body on approach, flyby or orbit operations is used. The polynomial segments can be of arbitrary length, and
can be of arbitrary order. The type of object being represented will determine that combination, with planet
ephemerides in general showing an optimum polynomial representation with long period polynomials of high-order
(e.g. 21), whereas a highly propulsive spacecraft trajectory will be optimal with short-period low-order (e.g. 3)
polynomials. The use of ES allows other onboard elements to have instant access to the positions of any celestial
body, the host spacecraft, or other spacecraft. ES also allows the representation of desired target trajectories, as was
done on DS1, or even pointing directions, as is done on Dawn currently.

A highly flexible and generic pointing specification capability was designed and implemented for the first time

on the Cassini spacecraft [17][18] in the Ada language, and largely re-implemented on Deep Space 1 in the C
language, with many very substantial enhancements to enable AutoNav operation[19]. These missions took a
traditional flight software approach to attitude specification and profile, and as such were relatively brittle and non-
malleable, except for that made possible by the rare – and generally labor intensive and traumatic – FSW updates.
As very highly capable as both systems were, there were numerous occasions when both operations teams wished
they had more or subtly different abilities, and much ground effort was expended to work around the absent
capability.

3
American Institute of Aeronautics and Astronautics

The RRDS (Responsive Rendezvous and Docking Sequencer) system [12] being implemented as part of a
NASA Phase II SBIR is primarily targeted toward a hypothetical Mars sample return mission, but is to a high degree
generic to any rendezvous problem. Working with an onboard autonomous GN&C system, such as the DS1 or Deep
Impact AutoNav system, RRDS will accomplish the rendezvous of a spacecraft with a target and the docking with
(or capture of) that target. As VML 3.0 has developed over the last several years, an advanced experimental version
of DI’s AutoNav has also evolved, to take advantage of some of the features of VML 3.0, especially including state
machines and a number of other important and enabling features. This new version of AutoNav is called AutoGNC
[7][17][20] because of attitude guidance and control features including attitude estimation, control and primitive
attitude profiling capability. Though primitive, these capabilities were sufficient to perform TRL-6 class system
computer-based demonstrations of several very difficult mission scenarios, including “Touch and Go” on an
asteroid, and lunar landing of a large crewed vehicle. These attitude profiling systems were readily implemented in
VML, where the mathematics of the profiling operations took place in small C routines. For VML 3.0 however, all
of the mathematics required for the attitude specification and profiling can take place in VML itself, and this is the
design of the RRDS attitude profiler.

C. Attitude specification

The design of the VML 3.0-based attitude specification system will make use of a number of characteristics that

distinguish it from VML 2.0 including:
• Native state-machine constructs
• Object-oriented sequencing constructs
• Vector and matrix algebra
• Conditional wait/detection on multiple logical states
• Arrays and data structures

At the core of the RRDS attitude specification and profiling system is the generic specification of targets and

spacecraft features. Targets can be any solar system object, arbitrary positions in space, another spacecraft, or a
vector – anything whose position can be specified as a Chebyshev polynomial in time. This would include a fixed
celestial attitude (e.g., a star), which is the degenerate case of a 0th order single term polynomial (i.e., a constant).
The names of the targets, and their ES identifiers are loaded into a VML database with a VML attitude specification
utility. Any number of potential targets may be entered into the database. Spacecraft features are associated with
various elements or instruments or faces of the spacecraft, and might include sensors, star trackers, solar array
gimbal axes, main engines, actuator booms, spacecraft faces, and anything else of operational interest. The features
are named appropriately (e.g., “solar-panel yoke”), and entered in the database, with a unit vector associated with
the feature in spacecraft coordinates, using another VML attitude specification utility.

The first specification necessary is the primary pointing specification. This could be, for example, the narrow

angle camera (NAC) toward the orbiting sample (OS) – something a sample return mission would need to do. This
specification would cause the spacecraft to be oriented such that NAC camera boresight would be pointed to the OS,
based on the ES-specified ephemeris of the OS, which in turn might have been computed by the ground and
uplinked, or perhaps generated onboard by an autonomous navigation function.

The next specification necessary is the second constraint of attitude, as specifying only one pointing direction

leaves a 2π radian ambiguity rotation about the primary pointing specification. There is always at least one other
specification needed by any spacecraft besides the primary, and that is usually to provide power. In this case the
secondary feature is “Panel-yoke”, and the secondary target is “Sun”, but there is another specification for the
secondary required, and that is an orientation specification, in this case that is “normal”. This accomplishes putting
the gimbal axis of the solar array normal to the sun vector, allowing the gimbal to put the arrays flat on the sun to
maximize power. Setting the orientation specification “toward” the sun would have attempted to place the panel
yoke as near to pointing toward the sun as possible – in general a direct point would not be possible – but this
orientation would be of little use for gathering energy.

With the primary and secondary specifications stated, the spacecraft will have an orientation to achieve when the

specification is activated, with the NAC on the OS, and the panel yoke normal to sun (with the arrays automatically

4

American Institute of Aeronautics and Astronautics

~10 second intervals of spline polynomials periodically produced, and passed to the attitude commander. The
principal distinction between “Turn” and “Track” is that the beltway turn path planner is not invoked in “Track”.
Nevertheless, the attitude constraints are constantly monitored by the Track Manager (in much the same way as the
turn-path planner observes them) and will halt tracking if the desired specification forces the spacecraft into a
pointing constraint zone, triggering a fault state.

Figure 2: VML-based attitude profiler. Profiler implemented as VML components using the AutoGNC ephemeris
service and providing outputs to flight software attitude commander.

The self-checking of constraints and flagging of violations raises a key advantage of using VML for the attitude
profiling application, namely fault protection. With VML-based managers controlling the real time logical
operations, it is very natural to embed the logical actions of fault handling in this naturally responsive and highly
real-time language. Because of this, all fault detections and reactions within the profiler are laid out in the managers
of the profiler itself, and fault states that cannot be resolved within the profiler are referred upward to the Flight
Director for action, the Flight Director itself being another state-machine-based VML element.

Other advantages of the VML approach include the much more compact code formulation of real-time events in

the endogenously real-time language. State machines, being part of the native constructs of VML 3.0 are also
represented transparently. These two factors alone account for at least an order of magnitude reduction in lines of
code vs. C-language coding of similar functions. With reduced code comes increased visibility of function. There
are few states of the spacecraft more important than its attitude: the VML-based attitude profiler makes the access
and action of the attitude profiling process transparent to all elements of the mission, and gives the mission planners
and managers additional tools to accomplish necessary mission functions. Included in these tools are the ability to
create arbitrary numbers of attitude specification abbreviations, as over 90% of a typical mission attitude
specifications are repeated specifications, and an abbreviated attitude specification can result in very substantial
operations savings.

6
American Institute of Aeronautics and Astronautics

III. Spacecraft commanding using Virtual Machine Language

A. Attitude profile use
The attitude profiler is implemented as a series of VML constructs. These constructs manage data, perform

calculations, access flight software services, and publish results in order to drive the spacecraft orientation. VML 3.0
is a commercialized product developed partly under NASA's SBIR program, chosen for its capabilities and heritage.

B. Spacecraft commanding

Commands are directives to the spacecraft, typically represented in a human-readable form and translated to a
binary format. Commands cause the spacecraft to behave in some desirable way for the purposes of science
collection, power management, thermal stabilization, propulsive maneuvers, pyrotechnic firing, and the like.
Commands may originate from ground-based human operators, flight software elements and sequences.

Sequencing is the issuance of spacecraft commands from an on-board store which allows the spacecraft to

perform in an automated fashion when no uplink is available, or when light speed delays obviate direct commanding
from the ground. Virtual Machine Language (VML) [1][5] is an award-winning [6] standardized multi-mission
language supplied by Blue Sun Enterprises which provides a structure from which spacecraft commands are issued.
Commands in VML may be timed according to absolute (wall-clock) time and relative time, as well as in response
to conditions on board the spacecraft using a technique known as event-driven sequencing.

C. Features and components

The VML flight execution environment provides multiple threads of execution within one task context using a
data-driven construct known as a sequencing engine. VML allows an extensive set of variable types, including
integers, unsigned integers, double-precision floats, logicals, and strings. Arithmetic and trigonometric calculations,
logical manipulations, and matrix operations are available for use. Conditionals may be used to make decisions
based on local values at runtime. WHILE and FOR loops perform iteration. Sequences exist as named functions
which can accept parameters and have local variables. Functions may be packaged together into a single file loaded
onto an engine in order to associate runtime behavior or to provide libraries of commonly needed services.

The VML tool suite consists of an embedded VML
Flight Component (VMLFC), a ground-based VML
Compiler, and the Offline Virtual Machine (OLVM)
program. This suite allows products to be generated,
loaded, executed, and tested. The relationship of each
of these VML tools is shown in Figure 6. A source file
containing human-readable VML script is generated
using a standard editor or a tool. The compiler
translates a text file into a loadable binary file,
translating commands and times using mission-
specific tools and tracking valid global variables and
symbolic constants for the mission. The file produced
can then be loaded by the VMLFC.

A typical development process runs the compiled
module under OLVM in order to test and validate the
behavior of the code. OLVM is used to perform user-
defined tests automatically by first capturing a user-

Figure 6. VML tool chain. Files of functions are
created by using an editor or ground data system (GDS)
tool to create human-readable VML script. The compiler
translates this into a binary format usable within OLVM
or a flight computer in atest lab or on the spacecraft.

guided session, then extracting user keystrokes from the human-readable session output and rerunning the test. This
automates the testing process with very little investment of effort. OLVM can be widely deployed on Linux,
Macintosh, and Sun platforms. Developers typically test products before taking them to the slower, less available,
and more expensive real-time Software Test Lab.

D. Heritage

Virtual Machine Language development started in 1997. Five versions have been implemented so far. VML has
been used or is in use on thirteen NASA flight missions to date, including Stardust [2], Genesis, Mars Odyssey,

9
American Institute of Aeronautics and Astronautics

Spitzer Space Telescope [3][4][8], MRO, Dawn, Phoenix, JUNO, GRAIL, and MAVEN. VML is slated for use on
OSIRIS-Rx. VML 3.0 is in use on Kennedy Space Center's RESOLVE lunar regolith analysis demonstration.

IV. Beltway attitude profiling

Attitude profiling may be implemented relatively simply as a beltway, by having the spacecraft orientation
follow as often as possible a fixed set of paths rather like the serpentine belt of a car's internal combustion engine.
The beltway defines safe paths to use in order to avoid adopting unsafe or damaging orientations. The attitude
profiler is responsible for entering and exiting the beltway, and prebuilding the beltway paths based on constraints.
This section discusses the graphical representation of orientation constraints, a simple turn algorithm based on the
concept of beltways, and the simple mathematical relationships used when implementing the algorithm

A. Graphical representation of constraints

Constraints prevent pointing elements of the spacecraft in potentially damaging directions. The most common
constraint satisfaction problem in attitude profiling involves turning the spacecraft from its current orientation to a
new orientation while avoiding pointing instruments and other light- and heat-sensitive components at the sun.
These constraints can be represented in three-dimensional space as cones centered on the spacecraft center of mass.
Having between two and ten keep-out zones is typical for a spacecraft.

A two-dimensional projection of these keep out zones onto the celestial sphere yields the field of view shown in

Figure 7, with azimuth ranging from -π to π, and elevation ranging from -π/2 to π/2. The target points represent the
desired location of the sun at the start and end of the turn. The spacecraft is turned in a way that the sun moves
between and among the keep-out zones without crossing into one. In this case, the straight-path turn would
inappropriately allow solar impingement on zones k2, k3, and k4, requiring an alternate path. One simple, safe, and
relatively efficient path to follow is highlighted in grey.

Figure 7. Constraint representation as field of view. Projection onto two-dimensional field of view in azimuth
range -π .. π radians and elevation range -π/2 .. π/2 radians.

In the current operational paradigm, the spacecraft operations team pre-checks endpoints for legality, then
creates a turn profile on the ground and uplinks the result to the spacecraft for execution. Ground personnel use a
variety of mathematical computations and analyses to optimize the path and verify its safety. The consequences of a
mistake can range from minor to disastrous, including degradation of instrument functionality, loss of cryogen, and
instrument destruction. When the ground plans a turn, the results are typically cross-checked for penetration into
keep-out zones by the flight system. In such a case the flight system stops motion, safes the spacecraft, and requests
ground intervention. Safe mode recovery is a costly and complex reaction to a bad turn request: it may result in

10
American Institute of Aeronautics and Astronautics

workweeks or work-months of personnel time to recover the spacecraft to normal operating procedure, and should
be avoided.

One way to reduce the risk of turn errors is to use on-board calculation of the turns, and onboard constraint-

based turn planning. Placing the turn process entirely onboard has the added advantage of simplifying the turn
execution process by largely removing associated ground activities. In addition, on-board turn calculation allows
larger on-board autonomy like on-board trajectory planning to occur using flight software elements like AutoGNC.
Modern sequence languages like VML contain sufficient mathematical richness to implement algorithms directly in
the sequencing language. Due to the lower cost of implementation and larger "bang for the buck" of sequences
relative to flight software, a VML implementation can reduce cost and risk relative to flight software.

B. Beltway turn algorithm

The algorithm for determining the turn path in Figure 7 is simple, yet efficient. The destination endpoint for the
sun within the field of view (provided by the ground, or by other on-board autonomy elements) is first checked for
validity, and the requested turn is refused if the destination falls with a keep-out zone. Next, the set of relevant zones
to consider is determined by finding the zones intersected by a straight-line path to the final orientation. If no zones
are intersected, a straight-line path is followed. Otherwise, the algorithm calculates the intersection of the straight-
line transit from the current position with the first keep-out zone circumference or tangent intersected by that path,
creating the first segment of movement with the intersection as its endpoint. Once it reaches this intersection, the
spacecraft follows the circular zone boundaries and pre-calculated tangents between keep-out zones which form a
beltway to follow around the zones. The path exits the pre-calculated tangents to reach the final orientation.

The algorithm has several advantages over a three-dimensional solution. First, it is simple enough to be

implemented onboard without undue processing. Second, most of the elements of any movement are common,
thereby simplifying test: the beltway provides a common set of paths, all of which can be tested. Only the initial
path segment from the current position to the required beltway and the exit from the beltway to the final destination
are unique, and easily derived as straight lines from a point to a tangent point on a circle. Finally, it is relatively easy
to visualize how the algorithm behaves, and to cross-check its behavior during spacecraft integration and operations.

C. Mathematical operations for finding intersections and tangents

Since the size and location of the keep out zones is constant, the entire set of beltways can be pre-calculated for
later use during turning. Each potential beltway relationship between keep out zones is shown in Figure 8 (i) and (ii),
where intersecting circles have only two possible outer tangents and non-intersecting circles have a set of two inner
and two outer tangents. For n keep out zones, the worst-case number of possible relationships between each set of
two circles, assuming no circles intersect, is (n-1)2. For the mission with six keep-out zones shown in Figure 7, 98
tangents between circles must be calculated. During runtime, relationships solving for the intersection of a line
segment and a circle shown in (iii) and two line segments shown in (iv) are also required.

Figure 8: Geometric relationships appearing in beltway attitude profiling. (i) Intersecting circle, outer tangents.
(ii) Nonintersecting circles, inner / outer tangents. (iii) Intersecting segment and circle. (iv) Intersecting segments.

The mathematical operations for finding the circle tangents shown in Figure 8 involve changing coordinate

systems from Cartesian to a polar system centered on the left circle, rotating the coordinate system so that the right
circle lays on the x axis, applying a set of algebraic equations to solve for the tangent line segments in the simpler
frame, rotating these solutions back to their original orientation, and translating them back to the standard frame of
reference and back into Cartesian form. The derivation of the solution in the simplified frame is omitted for brevity,

11
American Institute of Aeronautics and Astronautics

1

2

but requires nothing more than basic algebraic and trigonometric manipulations. A sample of the mathematical
formulas used in the problem is given below.

1. Intersection of two circles in simplified frame

if c > a + b, 0 intersection points

if c = a + b, 1 intersection point
θ = 0

if c < a + b, 2 intersections points

2. Outer tangents between two circles in simplified frame

θ = cos-1

θ = cos-1

((b2

((b2

- a2

- a2

- c2) / 2a)
- c2) / 2a)

! = !! − (! − !)!

! = !! + !! ! − !
! = sin!!

! !
! = tan!!

!
!! = ! − !
!! = −!! !

3. Inner tangents between two circles in simplified frame

!! = !! − ! + 2

!! = −!!

! = !! − (! + !)!

! = !! + !!
!

!! = sin!!

!
!

! = sin!!
!

!

!! = !! − ! − 2

!! = −!!

12
American Institute of Aeronautics and Astronautics

!

4. Intersection of line segment with circle in simplified frame

! = tan!! !! − !!

! !! − !!

!! = !! cos !! −!!

! = ! + cos!! !!
! ! !!

! =
!!

 ! cos ! − !
! !

!!
!! = !! − cos!!

!! !!

!! =
cos ! − !!

V. VML implementation of beltway attitude profiling
VML supplies the data structuring capabilities and matrix, trigonometric, arithmetic, and logical operations

necessary to implement the beltway attitude profiler described above. The advantages to using VML are twofold:
effort for developing VML constructs are considerably lower than for similar flight software, and the operational
implementation allows standard command, file, and telemetry services to be used to verify behavior. This section
lays out the high level operations of such a system, VML support for needed data structures and mathematical
operators, sample VML statements implementing portions of the mathematical manipulations, and an evaluation of
the efficiency of the algorithm based on the number of operations required.

A. High level operation

Operationally, attitude profiling of the spacecraft shown in Figure 2 involves receiving some description of a
turn, creating a set of spacecraft states based on this turn description, and feeding that set of states to a controller.
The controller translates the states into a desired immediate state of position, velocity, and acceleration which is fed
to a thrust and torque allocator, distributing the request across actuators like reaction wheels and thrusters. This
allocation in turn drives the reaction control software, causing the spacecraft to read the resulting change via the star
tracker, inertial measurement unit, and/or other instrumentation. An attitude estimator feeds the resulting
approximation of the spacecraft orientation back to the attitude controller, which continues the turn.

The attitude profiling process lives within the overall attitude control process as the tracking manager (for

maintain orientation) and the turn manager (for changing orientation targets). The managers are coded as VML
components running on sequencing engines, accessing low-level flight software capable of providing data-driven
services like ephemeris tracking.

By implementing the attitude profiler in VML, it becomes a simple matter to allow turn requests to come from a

variety of sources in addition to the ground, including onboard autonomy elements like a trajectory management
system or a flight director. Turn representations become high-level descriptions that are translated on board into
turns for consumption by later stages in the attitude control process.

B. Data organization using collections

Certain elements of the attitude profiler data are sufficiently complex that structuring of related elements helps to
organize the code, thereby making it simpler and easier to understand, develop, and maintain. VML provides a
construct called a collection, essentially a heterogeneous array that can be used in a manner similar to an array or a
data structure in C.

The quaternions representing the spacecraft position, velocity, and acceleration, and the changes thereto, are

natural applications for collections. Spacecraft vectors appearing in Figure 4 have corresponding data declarations as
three-vectors shown in Figure 9 a. A single quaternion would be declared as a 4x1 vector of double precision
floating point values, following a standard {x, y, z, magnitude} layout with a magnitude of 1 and {x, y, z}
constituting a unit vector. An entire array of quaternions containing values spanning an interval of time is given in
Figure 9 b. In addition, start and stop indices track which span of values are currently in use.

13
American Institute of Aeronautics and Astronautics

declare gvVPrimary := vector(3) declare gvQ := double(10, 4, 1)
declare gvVSecondary := vector(3) declare gvQdot := double(10, 4, 1)
declare gvVSun := vector(3) declare gvQdotdot := double(10, 4, 1)
declare gvVSpacecraft := vector(3) declare gvQStart := 0
declare gvThrustEphem := vector(3) declare gvQStop := 0

(a) (b)

Figure 9: Declarations for global variables visible to the flight software and to the ground. (a) Vectors
representing the primary and secondary pointing vectors, position of the sun, and orientation of the spacecraft. (b)
Position, velocity, and acceleration quaternions covering one second intervals for ten seconds, and a set of indices
indicating the range of elements containing valid values in those arrays.

C. VML statements for operations

The full set of matrix, arithmetic and trigonometric operations available in VML is given below. From these
operators and functions, powerful spacecraft elements requiring sophisticated computation can be derived. The table
is organized by the kind of operation. In addition to operations common to mathematical problems, logical, string,
and bitwise operations and functions are also listed. The attitude profiler makes use of primarily matrix, arithmetic /
trigonometric, logical, and comparison operations.

Matrix Arithmetic /

Trig
Comparison Logical Bitwise String

+ + = and and concat
- - != or or split_left
* (matrix, scalar) * < xor xor split_right
/ / <= not invert length
^ ^ > shift_left
abs abs >= shift_right
adjugate modulo
cofactor sin
cross cos
determinant tan
dot asin
identity acos
invert atan
minor atan2
set_value
transpose

Figure 10: Operations available in VML. Organized by data type, showing operators and functions available for
inclusion into sequencing products. Note that square root is implemented by the power (^) operator with an
exponent value of 1/2.

D. Sample VML statements for cross product derivation and tangent calculation
The basic equations given in sections II C and IV C are directly supported by VML matrix operation statements,

trigonometric operations, and arithmetic operations. A sample portion of code from the turn manager which
calculates the primary and secondary pointing axes for Figure 4 (the thrust vector case) is given in Figure 11. The
specification of the mathematical relationships concisely maps to VML constructs which execute at runtime. By
writing into sequencing global variables, values are automatically telemetered to the ground for monitoring and
verification, yielding considerable insight into the behavior of the system.

gvVPrimary := gvVThrustEphem ;updated by flight software service ES
gvVSecondary := gvVPrimary cross gvVSun

Figure 11: Vector operations for pointing axes with thrust vector on pseudo-target and panels on sun. Flight
software updates the thrust vector ephemeris and sun ephemeris by writing the results into global variables. Matrix
operations supply the cross product

14
American Institute of Aeronautics and Astronautics

A sample portion of code from a function for calculating inner circle tangents is given in Figure 12 in order to
demonstrate the correspondence of these functions to the mathematical representations in IV C. The names of local
variables differ from the more succinct mathematical names in order to enhance the clarity of the VML
representation. The calculation accepts two inputs defining the radius of the two circles in the simplified frame of
reference, and the offset of the second circle from the first along the axis in the simplified frame. Elements of the
calculation block defining outputs and internal local variables have been omitted for brevity. Note the use of the
power function with an exponent of 0.5 as a substitute for the square root function shown in C. Partial calculation
products like len_sq are used when a term appears in more than one location in order to reduce computational
effort. A constant value for π is defined in a common location in order to unify the value among all users. Ellipses
(...) indicate omitted statements.

calculation calcInnerCircleTangents

input rc1 ;radius of circle 1, a in diagram
input rc2 ;radius of circle 2, b in diagram
input offset2 ;offset of circle 2 from origin, c in diagram
...

body
len_sq := (offset2 ^ 2) - ((rc1 + rc2) ^ 2)
len := len_sq ^ 0.5

d := (len_sq + rc1 ^ 2)

theta1 := asin(len / offset2)
gamma := asin(rc1 / len)
theta2 := theta1 - gamma - pi / 2
...

Figure 12: Partial set of VML statements for calculating inner circle tangents

E. Single plan turn manager vs. periodic replan
A state machine diagram of the current version of the turn manager being developed is shown in Figure 13 (a),

and uses a one-pass approach, planning an entire turn with all constraints, executing that turn as a series of segments
to be followed, and falling into tracking mode to stay aligned with the target of the turn. It assumes turns of a short
enough duration that any updates to the target are handled by tracking after the turn is complete.

The next version of the algorithm is shown in Figure 13 (b). It will use a periodic replan during the execution of

the turn. This will allow tracking of targets that may be moving quickly relative to the spacecraft, for instance
surface features on a body during a flyby. Note that this capability requires only very minor additions to the original
single plan version, and shows up on the state diagram as the addition of one transition from turning back to
planning. All of the single-plan code will be reused without change. This demonstrates the highly factored nature of
the VML solution for attitude profiling. This change can be implemented without any changes to the underlying
flight software, and could be applied in flight by simply changing a file containing the turn manager sequence
elements and reloading an engine with the new file.

(a) (b)

Figure 13: Turn manager. (a) Full plan, execution, and track. (b) Periodic replan during turn.

15
American Institute of Aeronautics and Astronautics

F. Further enhancements
Once the basic turn manager is executing, a series of improvements will be considered for implementation.

Among the options are:
• Some means of wrapping around the boundary to find a shorter route
• Allowing transitory crossing of some kinds of keep-out zones so long as vehicle does not stop, which

corresponds to a thermal-only constraint rather than an exposure constraint
• Generalize the keep-out zones to handle hazards other than solar exposure

G. Progress on implementation

As of time of writing, the following elements of the attitude profiler have been undertaken. A progress indicator
for each is given.

• AutoGNC Ephemeris Services: complete, tested, and available
• Geometric analysis of beltway mathematical relationships between zones: complete
• Library of routines for performing needed calculations for beltway: written and undergoing testing
• Routines for determining pointing from specification: initial implementation undergoing testing
• Extension of VML to include class for target specification: under development
• Algorithm for entering and exiting beltway: under development
• Spline fitter: under development
• State machine graphical specification of turn manager: complete
• Implementation of turn manager in VML: under development
• Integrated testing with simulated system: not started

VI. Conclusions

Attitude profiling for spacecraft is time consuming and operationally intensive when done by ground-based
specialists. Recent developments in processing power and flight software improvements have opened the door to
solutions that are fast enough for on-board execution, transparent in operation, and relatively low effort to
implement. VML sequencing extensions supporting matrix mathematics, state machines, and object-oriented
programming are being used to implement attitude profiling for the Reactive Rendezvous Docking Sequencer in a
way that will allow onboard autonomy to be taken to a new level, without the need for custom flight software
development and its associated cost and schedule risk. This new operations paradigm for on-board attitude profiling
will allow operators to specify high-level activities to turn the spacecraft, thereby saving effort, reducing personnel
requirements, and lowering cost and risk.

Acknowledgments

The work described in this paper was carried out by Blue Sun Enterprises, Inc., under an agreement with the
National Aeronautics and Space Administration, and administered by the Office of Chief Technologist as a Small
Business Innovation Research grant.

Reports, Theses, and Individual Papers

References

1Grasso, C. A., Lock, P. d., “VML Sequencing: Growing Capabilities over Multiple Missions”, AIAA Space Operations
Conference Proceedings, April 2008.

2Grasso, C. A., “The Fully Programmable Spacecraft: Procedural Sequencing for JPL Deep Space Missions Using VML
(Virtual Machine Language)”, IEEE Aerospace Applications Conference Proceedings, March 2002.

3Grasso, C. A., “Techniques for Simplifying Operations Using VML (Virtual Machine Language) Sequencing on Mars
Odyssey and SIRTF”, IEEE Aerospace Applications Conference Proceedings, March 2003.

4Peer, S. and Grasso, C. A., “Spitzer Space Telescope Use of Virtual Machine Language”, IEEE Aerospace Conference
Proceedings, December 2004.

5Grasso, C. A., “Virtual Machine Language (VML)”, NPO 40365, JPL Commercial Programs Office, Innovative Technology
Asset Management Group, Docket Date: 12-May-2003.

16
American Institute of Aeronautics and Astronautics

6Grasso, C. A., “Virtual Machine Language (VML) NASA Board Award”, NASA Inventions and Contributions Board,
NASA Technical Report 40365, Award Date: September 7, 2006.

7Riedel, J. A., et. al., “AutoNav Mark 3: Engineering the Next Generation of Autonomous Onboard Navigation and
Guidance”, AIAA Guidance, Navigation, and Control Conference, August 2006.

8Chapel, J. et. al., “Aerobraking Safing Approach for 2001 Mars Odyssey”, American Astronautics Society Guidance and
Control Conference, Feb 2002.

9Riedel, J.E., Bhaskaran, S., et. al., “Navigation for the New Millennium: Autonomous Navigation for Deep Space-1,”
Proceedings of the 12th International Symposium on Flight Dynamics, Darmstadt, Germany, June 1997

10Grover, M., Cichy, D., Dasai, P.N., “Overview of the Phoenix Entry, Descent and Landing System Architecture,” AIAA
Paper AIAA 2006-7218, AIAA/AAS Astrodynamics Specialist Conference; Honolulu, HI, 18-21 August 2008.

11Garcia, M., Fujii, K., “Mission Design Overview for the Phoenix Mars Scout Mission,” AAS Paper 07-247, AIAA/AAS
Space Flight Mechanics Meeting; Sedona, AZ, 28 January -01 February 2007.

12Grasso, C. A., Riedel, J. E., Vaughn, A.T., “Reactive Sequencing for Autonomous Navigation Evolving from Phoenix
Entry, Descent, and Landing”, AIAA Space Operations Conference Proceedings, April 2010.

13Kubitschek, D., Mastrodemos, N., et. al., “Deep Impact Autonomous Navigation: The Trials of Targeting the Unknown,”
AAS 06-081, 29th Annual AAS Guidance and Control Conference, Breckenridge, Co., Feb. 4-8, 2006.

14Grasso, C. A., “Formal Methods for Design, Development, and Runtime: Runtime Verification of Distributed Reactive
Systems Using DR-VIA and RTV with extended TTM/RTTL Notation.” Doctoral Thesis, University of Colorado, 1996.

15Balaram, J. et. al., “DSENDS - A High-Fidelity Dynamics and Spacecraft Simulator for Entry, Descent and Surface
Landing”, IEEE Aerospace Conference, October 2001.

16D'Amario, L. A., Bollamn, W. E., et. al., “Mars Orbit Rendezvous Strategy for the Mars 2003/2005 Sample Return
Mission”, Jet Propulsion Laboratory, California Institute of Technology, document 092407 May 2008.

17Riedel, J.E., et. al., “Optical Navigation Plan and Strategy for the Lunar Lander Altair; OpNav for Lunar and other Crewed
and Robotic Exploration Applications”, AIAA-2010-7719, AIAA GN&C Conference, Aug. 2010, Toronto Canada

18R. Gaskell, “Landmark Navigation and Target Characterization in a Simulated Itokawa Encounter,” AAS/AIAA
Astrodynamics Specialists Conference, Jet Propulsion Laboratory, Pasadena, CA, August 2005.

19R. Gaskell, “Small Body Simulations for Navigation Approach and Landing,” AIAA Space 2005, American Institute of
Aeronautics and Astronautics, Long Beach, CA, August 2005.

20Riedel, J. E., et. al, “Configuring the Deep Impact AutoNav System for Lunar, Comet and Mars Landing”, AIAA-2008-
6940; AIAA/AAS Astrodynamics Specialist Conference; Honolulu, HI, 18-21 August 2008.

21Riedel, J.E., Bhaskaran, et. al., “Using Autonomous Navigation for Interplanetary Missions: The Validation of Deep Space
1 AutoNav,” IAA Paper L-0807, Fourth IAA International Conference on Low-Cost Planetary Missions, Laurel, Maryland, May
2000.

22Bhaskaran, S., J. E. Riedel, B. Kennedy, T. C. Wang, “Navigation of the Deep Space 1 Spacecraft at Borrelly,” AIAA paper
2002-4815, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, CA, August 5-8, 2002.

23Bhaskaran, S., Mastrodemos, N., Riedel, J., Synnott, S., “Optical Navigation for the Stardust Wild 2 Encounter,” 18th
International Symposium of Space Flight Dynamics, October 11-15 2004, Munich Germany.

24Rasmussen, R.D., Singh, G., et al, “Behavioral model pointing on Cassini using target vectors,” Proceedings of SPIE, vol.
2803, p. 271, 1996.

25Wong, E., Breckenridge, W., “An Attitude Control Design for the Cassini Spacecraft,” AIAA-95-3274, 1995.
26 Lisman, S., Chang, D., Singh, G., Fred H., Hadaegh, “Autonomous Guidance And Control Of A Solar Electric Propulsion
Spacecraft”, AIAA GN&C Specialist Conference, New Orleans, LA, 17 August, 1997

Related web sites
Blue Sun Enterprises VML Website http://www.bluesunenterprises.com

17
American Institute of Aeronautics and Astronautics

http://www.bluesunenterprises.com/

	VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML...
	I. Introduction
	II. Attitude profiling
	A. Challenges
	B. Enabling factors for a modern approach
	C. Attitude specification
	D. The RRDS VML-based attitude profiling system architecture and operation
	E. Example cases for the attitude profiling system

	III. Spacecraft commanding using Virtual Machine Language
	A. Attitude profile use
	B. Spacecraft commanding
	C. Features and components
	D. Heritage

	IV. Beltway attitude profiling
	A. Graphical representation of constraints
	B. Beltway turn algorithm
	C. Mathematical operations for finding intersections and tangents

	V. VML implementation of beltway attitude profiling
	A. High level operation
	B. Data organization using collections
	C. VML statements for operations
	D. Sample VML statements for cross product derivation and tangent calculation
	Figure 12: Partial set of VML statements for calculating inner circle tangents
	F. Further enhancements
	G. Progress on implementation

	VI. Conclusions
	Acknowledgments
	References

