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Outline of talk 

• Motivation 
– Interest in low temperature energy storage 
– Potential applications in robotic exploration 

 
• Benchmark performance of commercial cells 

 
• Approaches for designing low temperature systems 

 
• Experimental results 

 
• Summary 

2 



Low temperatures encountered during 
Solar System exploration 
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Low temperature Li-ion batteries for 
space applications 

Yardney 7 Ah Prototype Cells with Advanced Electrolytes 
Low Temperature Discharge Performance of Prototype Cells  

 Discharge Capacity (Ah) 

• Cells containing the methyl propionate-based electrolyte were observed to perform well 
down to -60oC using a C/10 discharge rate 

• Other advanced electrolytes developed at JPL used in conjunction with different cell 
types enable operation to even lower temperatures and higher rates 

• However, high rate discharge at very low temperatures remains a challenge 
• Charging batteries at low temperature remains a challenge, due to Li plating concerns 
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Need for low temperature power 
systems 

 
• Current practice: avionics in warm electronics box 

(WEB) with radioisotope heat source to maintain 
temperature between -40°C to +40°C 
 

• Extensive cabling presents design, integration and test 
challenge 
 

• Battery power de-rated at lower temperatures 
 

• Possible solution: Hybrid low temperature battery-
capacitor power systems 

Cabling for MER motors 

Mars Exploration Rover 
Li ion battery 

Warm electronics box (WEB) Cabling from the WEB 
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Double-layer capacitors for low temperature 
energy storage and power delivery 
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Technology need 
• Storing electrical energy and delivering power at low 

temperatures (<-30°C) remains a significant challenge 
• Difficult to deliver high power effectively at low temperatures 

(batteries derated due to slow kinetics) 
 

Objectives 
• Utilize the advantage of double-layer capacitors, which store 

energy at the electrochemical double-layer (rather than 
intercalation and redox processes, which are highly 
temperature sensitive) 

• Develop low temperature electrolytes to extend beyond -40°C 
limit with commercial cells 

• Target low equivalent series resistance (ESR) to effectively 
deliver power at low temperature 
 

Potential applications 
• Hybrid battery/capacitor low temperature power systems (with 

the capacitor providing pulse power at low temperatures) 
• Capacitor-only power systems, for low duty cycle distributed 

sensor platforms on planetary surfaces (with limited thermal 
management) 

• Fully testable thermal battery replacements 
 

High power density/moderate energy density of double-
layer capacitors can augment high energy density of 

batteries in low temperature power systems 

Double-layer  
capactiors 

BET surface area = 1344 m2/g 

Incremental pore surface area vs. pore width for 
representative activated carbon electrode material 
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Representative data from commercially 
available cells 
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Representative data from commercially 
available cells 
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Approach for low temperature double-
layer capacitor development 

1. Develop electrolyte with melting point lower than standard 
acetonitrile/propylene carbonate based systems 
 

2. Optimize salt type and salt concentration to eliminate salt precipitation issues 
and maximize conductivity (for maximum power delivery) 
 

3. Evaluate performance of low temperature electrolytes in small cells using 
standard high surface area carbon electrodes 
 

4. Optimize electrolyte systems 
 

5. Evaluate influence of electrodes on performance, and tailor electrodes for 
optimal low temperature performance 
 

6. Transfer electrolytes/materials to large cell format for more realistic 
evaluation/cycle life evaluation 
 
 

 
 

 

9 



Electrolyte design considerations 
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THF = tetrahydrofuran  DIOX = 1,3-dioxolane  
BL = gamma butryolactone  MF = methyl formate 
AN = acetonitrile   DEE = diethyl ether 
MA = methyl acetate  EA = ethyl acetate 10 



1,3-dioxolane lowers melting point 

O O

CH3 C N
+ 

mp = -85.7°C  
(1:1 AN:DIOX blend) 
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Solvent Freezing point (ºC) Dielectric constant (ε) Viscosity (cP) 
 

acetonitrile (AN) -43.84 37.5 (20°C) 0.33 (30°C) 

 
1,3-dioxolane (DIOX) -95 7.34 (25°C) 0.6 (20°C) 

3:1 v/v% AN:DIOX -67.9 27.1 N/A 

1:1 v/v% AN:DIOX -85.7 19.3 N/A 

Differential scanning calorimetry data for low 
temperature electrolyte solvent system 

Conductivity for three salt 
concentrations 

1:1 AN:DIOX blend 

Appreciable conductivity 
below -40°C limit 



Coin cell assembly for experimental 
cells 

• 2032 coin cell 
• Separator: 25 micron polyethylene (Tonen) 
• Electrodes: Activated carbon 
• Salt: Quaternary ammonium salts 
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Incremental pore surface area vs. pore width for representative electrode material 

BET surface area = 1344 m2/g 
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Challenge maintaining low ESR at low 
temperatures 
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At low temperature and higher salt concentrations, 
ESR increases with temperature due to decreased 

salt solubility (coin cell data) 



Methyl formate co-solvent enables 
operation to -80°C in experimental cell 
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Electrolyte = 0.250 M TEATFB  in 1:1 acetonitrile / methyl formate 

C = 1 F (+23°C) 

C = 1 F (-80°C) 

Discharge current = 1 mA 

• 2032 coin cells 
• Separator: 25 micron polyethylene (Tonen) 
• Electrodes: PACMM 203 activated carbon 
• Salt: Tetraethylammonium tetrafluoroborate 

 

Solvent Freezing point (ºC) 
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Performance of large double-layer 
capacitor cells at -70°C 
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• At -70°C, cell displays ~520 F capacity at 1 A and Vmax = 

1.5 V with very linear discharge characteristics 
 

• Large cell format facilitates long duration cycling studies 
 

• Electrolyte: 1:1 acetonitrile / methyl formate 
• Salt: 0.5 M tetraethylammonium tetrafluoroborate 

 



Optimizing salt and electrode materials 
for low temperature performance 

Collaboration with Professor Gleb Yushin at Georgia Tech 
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1 M TEATFB in acetonitrile vs.  
0.5 SPB-TFB in 1:1 acetonitrile / methyl formate at   
– 60 ºC (coin cell using different zeolite templated 

carbon electrodes) 

N

SPB cation 

 SEM micrograph of Georgia 
Tech zeolite templated carbon 

powder electrode material 



Summary   

• Demonstrated double-layer capacitor operation to at least -80°C 
 

• Low temperature operation enabled by: 
– Base acetonitrile / TEATFB salt formulation 
– Addition of low melting point formates, esters and cyclic ethers 

 
• Key electrolyte design factors: 

– Volume of co-solvent 
– Concentration of salt 

 
• Continuing efforts 

– Larger scale cells for life testing 
– Lower melting point blends (ternary, quaternary, PC blends) 
– Higher capacitance electrodes 
– Higher voltage blends 
– Hybrid cells 
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