A Hydraulic-Alternator System for Ocean Submersible Vehicles

Harry O. Aintablian, Thomas I. Valdez, Jack A. Jones

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA, 91109

IECEC 2012
July 29 – August 1, 2012
Atlanta, Georgia

Copyright 2011 California Institute of Technology.
Government sponsorship acknowledged.
Outline

- Introduction
- System design
 - Hydraulic motor
 - Alternator
- Test results
 - Laboratory test results
 - Submersible vehicle measurement data
- Conclusions
Introduction

- Ocean floating instruments to monitor ocean climate
- Power is a major limitation

Argo Program:
3000+ floating instruments
Alternative technology for power generation

Temperature Difference ➔ Volume Change ➔ Pressure Difference

- Phase change material (PCM)
 - Expands/contracts as it encounters warm/cold waters at ocean surface/depth
 - Creates a pressure difference that drives a hydraulic motor – alternator
- Generated electric power stored in batteries
- Renewable energy system

Battery Recharging
System design

- Hydraulic motor serves as prime mover to 3-phase synchronous generator
- Gearbox matches speeds of motor – alternator
- 3-phase full wave rectifier converts ac power to dc for recharging Li-Ion battery
- Shunt regulator diverts any excess power
- Emphasis on system efficiency improvement
 - Specifically, hydraulic motor – alternator efficiency
Hydraulic motor

- Overall efficiency: \(\eta_o = \eta_m \eta_v \)
- Volumetric efficiency: \(\eta_v = \frac{Q_{\text{actual}}}{Q_{\text{theoretical}}} \)
 - Flow \(Q \) in m\(^3\)/s
- Mechanical efficiency: \(\eta_m = \frac{\tau_{\text{actual}}}{\tau_{\text{theoretical}}} \)
 - \(\tau \) in N-m
- \(V \): displacement in m\(^3\)/rev \(Q = V \ n \)
 - \(N \): speed in rev/s
- \(\Delta p \): pressure drop in N/m\(^2\) \(\tau = V \ \Delta p \)
- Gear motor: fixed displacement
- Efficiency of hydraulic motor expected to increase with speed and pressure drop
- Efficiency tapers off due to leakage and mechanical losses
Alternator

- **Speed – Torque characteristics**
 - W_{nl}: no load angular velocity in rad/s w_{nl}
 - T_s: stall torque
- **Mechanical power**
 - Max. power at $T_s / 2$
- **Efficiency**
 - I_{nl}, I_s: no load and stall currents

\[
\omega = \frac{\omega_{nl}}{T_s} (T_s - T)
\]

\[
P = \omega_{nl} T - \frac{\omega_{nl}}{T_s} T^2
\]
Test Setup

- Fill tank with oil and pressurize
- Open valve to allow for pressure drop across hydraulic motor
Sample Lab Test Results

Hydraulic Motor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆p</td>
<td>2,195 psi (or 1.5 x 10^7 pa)</td>
</tr>
<tr>
<td>Q</td>
<td>1.2 GPM (or 7.5 x 10^-5 m^3/s)</td>
</tr>
<tr>
<td>Speed</td>
<td>1,554 rpm</td>
</tr>
<tr>
<td>$P_{in} = Q \Delta p$</td>
<td>1,136 W</td>
</tr>
</tbody>
</table>

PM Alternator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>6,216 rpm</td>
</tr>
<tr>
<td>V_{LN}</td>
<td>21.5 V</td>
</tr>
<tr>
<td>I_{line}</td>
<td>10.2 A</td>
</tr>
<tr>
<td>$P_{out} = 3 V_{LN} I_{line}$</td>
<td>655 W</td>
</tr>
</tbody>
</table>

System Efficiency

| Efficiency | 58% |

Overall power efficiency is 0.58
Deployment of integrated vehicle in ocean

- 84 kg vehicle
- 1000 dives between surface and 500 m
• 1.7 W-hr generated per cycle
• Sufficient to provide vehicle power needs
Conclusions and recommendations

• Hydraulic motor – alternator system built and tested
 – 58% efficiency achieved in lab
• Successful submersible vehicle operation demonstrated in ocean
• Recommend further optimization of system
 – Custom design and build hydraulic motor – alternator set
 • Match torques of motor and alternator to eliminate the need for a gearbox
 • Design system for maximum efficiency (or minimum losses) under rated conditions