End-to-End Dexterous Manipulation with Deliberate Interactive Estimation

Nicolas Hudson, Thomas Howard, Jeremy Ma, Abhinandan Jain, Max Bajracharya, Steven Myint, Calvin Kuo, Larry Matthies, Paul Backes

Paul Hebert, Joel Burdick

1. Jet Propulsion Laboratory, California Institute of Technology.
2. Mechanical and Civil Engineering, California Institute of Technology.

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged
The DARPA ARM-S Program

Six Teams:
- Carnegie Mellon University
- HRL Laboratories
- iRobot
- Jet Propulsion Laboratory
- SRI International
- University of Southern California

All teams provided same GFE: identical robots and test objects

Each team creates and refines algorithms at its own facility

Teams send code to DARPA’s test facility for evaluation

youtube.com: “DARPA Autonomous Robotic Manipulation”
http://thearmrobot.com/
“Traditional” Sense-Plan-Act
Interactive Manipulation

DARPA ARM-S Experiments
Unlocking a Door

Jet Propulsion Laboratory
California Institute of Technology

September 22, 2011
2x Real-Time
Team Approach / Philosophy

Sense: Non-Contact Map building and initial object classification and localization

Plan (with best model)
Into contact with environment

Estimation
(conditioned on model)
Update object, robot, environment, contact states

Act/Control: (feed-forward model)
Merge with feedback behaviors

- Minimal calibration: assume there are errors, and estimate online.
- Model Based: continual model refinement & use all aproi knowledge
- By the final DARPA test we had enforced touching (table or object), updating, and *then* grasping or manipulating, *for everything*
1. Table plane estimation (RANSAC)

2. 2.5 D map generation with clustering of elevated cells

3. Object Segmentation:
 a) Geometric/Volume Based
 b) Contour Based
 c) Color Based

 Iterative Closed Point (ICP) pose refinement
 Contour and RGB space template matching

6 DOF Pose
Estimation: Objects and Arm in Visual Frame

- Unscented Kalman Filter
- Measurement Fusion:
 - Visual (3D points, features, shape, silhouette)
 - Tactile (contact points)
 - Force Torque (object mass)
- State \(X = \{G_{KV}, G_{PO}\} \)

\(G_{KV} \): Kinematic wrist to wrist in visual frame

\(G_{PO} \): Palm to Object

P. Hebert. Combined Shape, Appearance and Silhouette for Simultaneous Manipulator and Object Tracking. ICRA 2012
TODAY 11:45-12:00 Room 3
• World modeling (robot + objects), using Spatial Operator Algebra (SOA) models
 A. Jain, et al. *Minimal Coordinate Formulation of Contact Dynamics in Operational Space*. RSS 2012 (To Appear).

• Real-time estimation of object & arm pose conditioned on object models.

• Model-predictive trajectory planner for a 15-DOF robotic torso
 • Sampling in a lower DOF space of synchronized parameterized actions with bounded velocity constraints
 • Resulting motions are naturally continuous in velocity and do not require post-processing (smoothing).
 • Computationally efficient, parallelizable sampling methods.
Model-Predictive Trajectory Planner

Grasping: free-space or behavior-based for fully and partially known geometry

View planning: minimize occlusions for arm tracking

Interaction: sequences of deliberate motion into objects and environment for localization
Behavior Based Grasping (90+% of grasps)

“grounding grasp”

“table grasp”
Generalized Compliant Motion (GCM)

4 Task Frame Feedback Behaviors (Concurrent, Super-positioning) for all actions:
- Force-Torque Regularization
- Estimated Kinematic Wrist to Visual Wrist Feedback / Visual Tracking
- Dither additive disturbance
- Kinematic limit avoidance

2 Finger Behaviors
- Strain Regularization
- Pause on contact
System / Control Framework

Pickup Ball → \{Move above ball, touch table, touch ball, close fingers\}

Touch Table→ \{Cartesian trajectory + force control behavior\}
ARM-S Phase 1: Grasping Tasks

- Ball
- Shovel
- Novel Hammer
- Maglite
- Novel Rock
- Hammer
- Floodlight
- Rock
- Case
- Screwdriver
- Radio
- Novel Screwdriver
ARM-S Phase 1: Manipulation Tasks

- Open Door
- Staple
- Flashlight
- Unlock Door
- Hang Up Phone
- Drill
<table>
<thead>
<tr>
<th></th>
<th>Successes (out of 72)</th>
<th>Grasping (out of 48)</th>
<th>Manipulation (out of 24)</th>
<th>Average Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPL</td>
<td>67</td>
<td>47</td>
<td>20</td>
<td>75.4</td>
</tr>
<tr>
<td>Team B</td>
<td>67</td>
<td>47</td>
<td>20</td>
<td>80.6</td>
</tr>
<tr>
<td>Team C</td>
<td>64</td>
<td>46</td>
<td>18</td>
<td>77.5</td>
</tr>
<tr>
<td>Team D</td>
<td>58</td>
<td>47</td>
<td>11</td>
<td>125.7</td>
</tr>
<tr>
<td>Team E</td>
<td>58</td>
<td>41</td>
<td>17</td>
<td>170.7</td>
</tr>
<tr>
<td>Team F</td>
<td>49</td>
<td>42</td>
<td>7</td>
<td>151.8</td>
</tr>
</tbody>
</table>

JPL is “Team A”

Achieved with: Estimator/Model Based interactive manipulation
Questions?

For more info:

P. Hebert. *Combined Shape, Appearance and Silhouette for Simultaneous Manipulator and Object Tracking*. ICRA 2012

TODAY 11:45-12:00 Room 3

T. Allen. *Two-Fingered Caging of Polygons Via Contact-Space Graph Search*. ICRA 2012

Thursday 11:30-11:45 Room 2

ICRA May 16th 2012