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ABSTRACT 
 

Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance 
in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces 
that provide high vantage points without the help of any external sensor and with a fully contained on-board software 
solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to 
navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no 
special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, 
the landing platform detection system uses a planar homography decomposition to detect landing targets and produce 
approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose 
estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and 
to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs 
from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial 
vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is 
able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets. 

 
1. INTRODUCTION 

 

Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance, exploration, and search and 
rescue applications. While missions in these scenarios most likely involve human supervision, the deployability of MAVs 
will greatly depend on their ability to perform simple navigation tasks autonomously to reduce human work load and 
increase safety. Additionally, operations in cluttered environments like urban canyons, close to buildings and other man 
made structure, or under tree canopy, make it much more challenging to control these systems manually as there is usually 
no external position information (GPS) available in these environments to navigate the system. As a consequence, future 
systems will need the ability to execute limited navigation tasks like obstacle avoidance for fast traverse, detecting a 
possible landing site, flying to a nearby navigation target, or entering buildings fully autonomously. 

However, because of size weight and power (SWaP) constraints, it is challenging to deploy heavy power- and CPU 
intensive sensor suites on MAVs, and small passive vision sensors have seen increasing use for navigation tasks, as a 
single light weight, passive sensor can be employed simultaneously for detection and 3D reconstruction. Using only a 
vision sensor nevertheless creates new challenges, as a structure from motion approach with a single moving camera can 
reconstruct 3D information only up to scale, unless the exact motion is known. Systems that are deployed outdoors at higher 
altitudes can overcome this issue by using GPS data for pose recovery, but this is not an option for systems operating in 
GPS-denied environments.To cope with this issue, we developed a vision based navigation system on a small UAV with a 
minimal sensor suite - a single camera, sonar altimeter, and IMU - that operates with on-board resources only. Our system 
uses a monocular simultaneous localization and mapping (SLAM) approach that processes images from a down looking 
camera for vehicle localization in a constructed global map. SLAM position measurements are fused with IMU data to 
generate high frame rate low latency position updates as an input to the vehicle control algorithm.  Because of its good 
performance and scalability, we adapted parallel tracking and mapping (PTAM) on our platform, a visual SLAM algorithm 
originally developed by Klein and Murray,1 and integrated map scaling with a sonar altimeter into the algorithm to regain 
scale. 

With this implementation, our vehicle can navigate without any external sensors and resources, which we demonstrate 
in an autonomous landing experiment, a maneuver that is of particular importance to many persistent surveillance tasks, 
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Figure 1. Quadrotor landing on the landing platform. 
 
 

as the capability to land autonomously on elevated vantage points like flat roof tops or the top of poles and other man 
made structure is essential for perch and stare missions. To simplify this task to a laboratory set up, we implemented our 
autonomous landing software2 on-board the system to detect an elevated box shaped landing surface as a surrogate roof- 
top and execute a fully autonomous landing maneuver onto the detected platform. The landing platform detector follows 
a homography based approach, which fits homographies to visual feature points to detect planar surfaces in view. It runs 
independently of the SLAM software, except that feature points in the input images together with frame pose are provided 
as a by-product of the SLAM algorithm. In our final implementation, we run the complete software package - visual 
SLAM, sensor fusion filter, landing spot detection, and the navigation software - on-board an AscTec Pelican quadrotor∗. 

The rest of this paper is organized as follows: Section 2 discusses related work and how our approach differs. In section 
3 we introduce our approach in detail, while section 4 explains the actual implementation of the algorithms on-board our 
test vehicle. The whole system is evaluated in Section 5 demonstrating its performance during flight experiments. Section 
6 concludes this paper and discusses future work. 

 
2. RELATED WORK 

 

The problem of localizing a moving vehicle in its environment usually involves measuring the position of 3D world refer- 
ence points and estimating pose with respect to the location of these points. Methods that use beacon type reference points, 
like radio aids or GPS emitters, can solve this problem by calculating body positions at each frame independently. In con- 
trast, if arbitrary point observations are used to calculate egomotion, reference points have to be identified over time which 
introduces a tracking problem that usually also includes the creation of some kind of map to store previous observations. 

Various methods have been proposed to solve this problem and the literature is vast. Examples range from visual odom- 
etry approaches (VO) that focus on egomotion estimation3 to simultaneous localization and mapping (SLAM) algorithms 
that emphasize on the creation of a global map.4–7 To track features in the environment, some approaches use active range 
sensors and match 3D point clouds over time (e.g. sonar,8 lidar,5, 6, 9 or kinect10). Other approaches track image features 
obtained from camera images and reconstruct 3D point locations with a structure from motion approach (single camera1, 7) 
or with range from stereo (stereo vision based approaches3, 11). 

Most of the above algorithm are computationally very demanding and therefore not suitable for running on a small 
UAV platform with its limited resources. Although new real-time visual SLAM approaches have been proposed in recent 
years that reduce the computational load by introducing a key-frame based mapping approach,1, 12, 13 these approaches 
usually make heavy use of multi-core CPU/GPU implementations to achieve real-time performance. Nevertheless, a visual 
key-frame based approach can be sufficiently down scaled to run even on a very limited platform. An example of such a 
method is the parallel tracking and mapping (PTAM) approach originally developed by Klein and Murray.1 In this approach 
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tracking and mapping are split and distributed to two different tasks that run independently. With this architecture, the 
tracking task can run efficiently at a higher frame rate and provide localization, whereas the mapping task is only triggered 
when sufficiently new feature points are observed and a new key-frame needs to be added to the map. Klein and Murray 
demonstrated that such an algorithm can be executed on a camera cell phone (iPhone3G with an ARM11 processor)14 and 
Weiss et al.15 and Achtelik et al.16 successfully implemented a down scaled version of this approach on a small UAV 
similar to the one that is used in our approach. An example of a simplified Lidar based SLAM approach which also runs 
on the Asctec Pelican platform and reduces the full 3D approach to a 2D occupancy grid-based incremental SLAM method 
was introduced by Shen et al.6 

Despite the effort of implementing a ‘lean’ SLAM algorithm on a limited hardware platform, the real-time performance 
of such an algorithm is usually barely sufficient to run a vehicle controller directly with position estimates from the SLAM 
algorithm, as low frame rates and large latencies result in poor control performance. As a result, a standard approach for 
many platforms is the Kalman filter-based fusion of low-frequency global position data, which could be from SLAM, GPS, 
or VO, with high frequency inertial data to compensate for latencies and increase the position update frame rate.6, 9, 16 

We follow a similar approach and demonstrate that such a system can be used for autonomous navigation of a MAV, 
which involves detection of a landing platform and performing an autonomous landing maneuver. 

Detecting navigation targets has a long history in terms of detecting and localizing artificially labeled landing sites. A 
number of image-based methods have been proposed to detect fixed markers17–19 or terrain features20–22 for landing site 
identification. In this paper, we deploy an approach that uses multiple homography decomposition to detect an elevated 
planar surface without any artificial labeling2 which relates more to other homography based methods for identification of 
a single planar surface as potential landing sites for various helicopter and aircraft applications.23, 24 

 
3. APPROACH 

 

Our approach consists of three main parts that are all implemented on-board an Asctec Pelican quadrotor: vehicle controller, 
position estimation, and the navigation system which includes landing platform detection. 

 
3.1 Vehicle control 
The vehicle is controlled with three different control loops.2 The inner loop, implemented in the quadrotor’s firmware, 
stabilizes attitude using high frame rate IMU inputs. The outer loop controls the vehicle position in a world coordinate 
frame with inputs from our pose estimation filter. It is implemented as three PID position controllers, one for each axis of 
the world north east down (NED) frame. The autonomy loop is responsible for the navigation of the vehicle. It receives 
inputs from the landing platform detector and triggers high level maneuvers including take-off, landing and trajectory 
following. 

 
3.2 Visual SLAM based localization 
To localize the vehicle in the world frame, we use a monocular visual SLAM approach to generate pose estimates and fuse 
this global position measurement with IMU data for latency reduction and to generate a high frame rate control input to 
the outer loop controller. We implemented a tailored version of PTAM (parallel tracking and mapping)1 on the on-board 
embedded computer of the Asctec Pelican which runs on images that are acquired from a downward looking camera. We 
streamlined PTAM’s tracking task to accommodate the limited computational resource on a MAV platform, and included 
map scaling by inputs from a sonar altimeter which we explain in more detail in section 4. 

 
3.3 Sensor fusion with IMU 
Since the quadrotor is a fairly agile vehicle, the achievable control performance is dominated by the rate and latency 
of the 6DOF pose estimation loop in addition to accuracy of pose estimates.  While the accuracy of SLAM algorithms 
is usually acceptable for vehicle control, computational requirements especially on low power platforms prevent these 
algorithms from running at reasonable speeds to serve directly as a position input to the outer loop controller without 
compromising performance. To overcome this issue, we fuse SLAM position measurements with data from an on-board 
IMU via an Extended Kalman Filter (EKF)25 to obtain accurate and decreased latency 6DOF pose. Our EKF sensor fusion 
filter models 9 states: the error in position (δ p), velocity (δ v), and accelerometer bias (δ b). As mentioned above, attitude 
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Figure 4. Inflight image processing steps: (a) original input image; (b) detected feature points that are used by PTAM to localize; (c) 
the landing detector separates those features as located on the ground plane (blue) and on the elevated surface (purple); the final target 
waypoint is marked in green. 

 
 

The EKF update step is triggered anytime a PTAM measurement becomes available. To compensate for PTAM latency, 
the accelerometer, position, and velocity data is saved in a buffer and after every EKF update the current position is 
computed by reintegrating the acceleration data from PTAM time of validity (image acquisition time) to current time. 

Figure 3 shows the effect of the latency reduction during a real experiment. The filter is able to largely compensate the 
latency introduced by the PTAM algorithm. In this figure and during the experimental evaluation we use PTAM position 
measurements at image acquisition time as a quasi ground truth, as PTAM accuracy at flight altitudes of 1m was better than 
1cm. 

 
3.4 Autonomous landing 
To detect an elevated landing platform as a surrogate roof top we use a multiple homography approach to separate image 
feature points that are located on the ground and on the elevated platform.  The landing platform detection is similar to 
previous work2 with the difference that visual image features and frame poses are directly provided from the visual SLAM 
algorithm. As a result, in this implementation the landing platform detector uses PTAM’s FAST corner features as inputs. 
A RANSAC based homography estimation first detects all feature points that are located on the ground surface (e.g. floor). 
In a second step, the algorithm fits a second homography to all remaining feature points to detect an elevated surface. If 
a second plane is detected, the plane parameters of both planes are refined by homography alignment.2, 26 Once sufficient 
feature points are detected on the elevated surface and the landing platform is completely in view (fig. 4c) a 3D waypoint 
is generated on top of the landing surface at its estimated center. If the platform height is above a minimum threshold, the 
3D waypoint is than added to a sample pool that contains all waypoints that were generated previously in different camera 
frames. If the pool surpasses a minimum number of samples and the mean variation drops below a threshold, the landing 
platform is assumed to be detected stably and the mean 3D way point is passed to the autonomy loop as the new target 
waypoint. Once detected, the autonomy loop generates a hovering point directly over the target waypoint at the current 
height and commands the vehicle to this new hovering point. After the vehicle hovers stably at the hovering point, it slowly 
descends towards the target waypoint until it reaches a minimum altitude above the landing platform, where the motors are 
cut off to let the vehicle settle on the landing platform. 

 
 
 

4.1 Platform description 
4. IMPLEMENTATION 

We implemented our algorithms on an AscTec Pelican quadrotor (figure 1), which is a 750g, 50cm diameter quadrotor 
that can carry up to 500g payload. In addition to the original sensor suite that comes with the vehicle (IMU, magnetome- 
ter, barometric pressure sensor) we installed a downward looking camera to track features on the ground (a PointGrey 
Chameleon USB camera with a Fujinon fisheye lens capturing 140◦ FOV, 640x480 images) and a MaxSonar EZ1 sonar 
altimeter (2.5cm resolution, 20Hz, 0.12-6.45m range) on the vehicle. Two ARM7 processors on a flight electronics board 
and an additional Intel Atom 1.6GHz CPU on an embedded computing board are available for on-board computation. 
Additionally, the embedded computing board is linked to a base station via WiFi for telemetry monitoring and for safety 
intervention. 
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Figure 5. Software distribution on the quadrotor hardware. 
 
 

4.2 Software architecture 
In our implementation, we use the firmware attitude stabilization that ships with the vehicle, which includes a filter to 
estimate attitude angles in NED frame. This filter is running on one of the ARM7s (LL processor) at 1kHz. The other 
ARM7 (HL processor) runs our vehicle outer loop controller which communicates with the autonomy loop that is executed 
on the Atom board. 

Figure 5 illustrates the different software components and how they are implemented on our system. The inner loop 
controller runs at 1kHz and the outer loop controller at 50Hz on the low level ARM processors. PTAM is running at 
approximately 15Hz and feeding into our pose estimation filter which is executed at 100Hz on the Atom. The autonomy 
loop runs at 5 Hz, with inputs from pose estimation and the landing platform detector. It also communicates with the base 
station computer that is linked via WiFi for data monitoring and for safety commands (engine cut-off). All inter-process 
communication on the Atom and the base station computer is implemented using ROS.27 

 
4.3 PTAM adaption 
We amended PTAM’s map making thread to scale the generated map with measurements from a sonar altimeter during 
the initial map generation phase. In this phase, height measurements from a downward pointing sonar sensor are collected 
whenever a new key frame is added, and an average scale factor is calculated to scale PTAM’s map to a metric map. This 
initial phase is terminated after a fixed number of key frames were added to the global map, which fixes the map scale 
for the rest of the map making process. All key frame generation and tracking parameters were adapted for fast tracking 
performance. Additionally, the tracking part of PTAM directly passes the rectified 2D feature point positions of detected 
image features to the landing spot detector. As a result, no additional image pre-processing is needed by the landing 
detection subsystem. 

 
5. EXPERIMENTAL RESULTS 

 

We conducted two experiments to evaluate the control accuracy of our system. In the first experiment the quadrotor is 
commanded to hover over a fixed position in the world frame. In the second experiment we evaluate the autonomous 
landing performance of our system. 

For both experiments, we used pre-built PTAM maps to compare the performance of several experimental runs which 
all use the same global map. Additionally, this approach guarantees that delays introduced by PTAM’s map making task - 
PTAM’s bundle-adjustment usually generates a substantial delay when incorporating a new key-frame into its map - do not 
corrupt flight performances evaluations. Computationally, running only the localization part of PTAM results in a small 
speed up of the on-board implementation. For flight configurations that include on-board mapping, a good strategy to limit 
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Figure 11. Estimated landing platform height. 

 
 

to the outer loop controller, and when using pose estimates from the sensor fusion filter. The better performance of the 
sensor fusion approach is directly visible in the smaller trajectory fluctuations when controlling the vehicle with position 
estimates from our sensor fusion filter during flights of similar duration (fig. 10a & b). Additionally, the improved control 
stability permitted us to increase the vehicle speed by a factor of 3 with the same flight performance (fig. 10c). 

To validate the accuracy of the landing platform detection software, the calculated platform height during detection is 
shown in figure 11 until convergence. The true platform height in our experiment was 14cm, which was approximated with 
sufficient accuracy by the landing platform detection algorithm. 

 
6. CONCLUSIONS AND FUTURE WORK 

 

Being able to navigate autonomously in unknown environments without any external input is crucial for future MAV 
reconnaissance applications. This paper presents a vision based position estimation approach that enables small UAVs to 
navigate autonomously when no external position information is available. Our approach fuses position measurements 
from a low-frequency, high latency visual SLAM approach with IMU data to estimate a high frame rate, low latency 
pose that can be used to navigate the vehicle within a global map. The algorithm was implemented on-board an AscTec 
Pelican quadrotor using only on-board sensors and resources. After demonstrating accurate performance of the system 
when hovering in place, we fused our autonomous landing detection software with the new system and demonstrated fully 
autonomous detection and landing on an elevated landing platform that does not need artificial labeling. Future work 
will include the transition of the landing detection approach to more general landing surfaces (sloped surfaces, poles, 
tree branches) and the addition of a safety layer in between the inner loop attitude stabilization and the high level map 
localization, which takes over control when the high level SLAM system fails to provide localization data (lost tracking). 
In this case, a fast optical flow based approach can provide egomotion estimation until the high level SLAM relocalizes. 
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